PHASE OF THE CP-INVARIANCE VIOLATION IN τ^{0} DECAY*

S. L. Glashow[†] and S. Weinberg[†]

Department of Physics, University of California, Berkeley, California (Received 13 Aprıl 1965)

A recent experiment¹ indicates possible strong *CP*-invariance violation in the decay mode $K_1^0 \rightarrow \pi^+ + \pi^- + \pi^0$. The measured ratio of the K_1^0 and K_2^0 decay amplitudes,²

$$\begin{split} & \operatorname{Re}(a_1/a_2) = +0.25 \pm 0.65, \\ & \operatorname{Im}(a_1/a_2) = +1.00 \pm 0.65, \end{split} \tag{1}$$

suggests that this ratio may have absolute magnitude of order unity and phase near 90°, though of course the statistics are hardly conclusive. (If *CP* were conserved then K_1^{0} could only decay into asymmetric three-pion states with large centrifugal barriers, and a_1/a_2 would be very small.)

We wish to point out that if a_1/a_2 is actually not much less than one in magnitude, then CPTsymmetry and the $\Delta T \leq \frac{3}{2}$ rule require its phase to be very close to $\pm 90^{\circ}$. This constraint was not imposed in the analysis made in reference 1, so the fact that their analysis did give a mostly imaginary ratio lends additional credence to the existence of a strong $K_1^{0} \rightarrow 3\pi$ mode.³ If this mode does exist, then a refined measurement of the phase of a_1/a_2 can provide a sensitive test of CPT and/or $\Delta T \leq \frac{3}{2}$.

Our remarks are based on the following simple theorem: If A_1 and A_2 are the amplitudes for K_1^0 and K_2^0 decay into any self-*CPT*-conjugate channel which is an eigenstate of the strong-interaction S matrix [e.g., $(\pi\pi)_{T=0}$], then

$$\frac{2 \operatorname{Re} A_1 A_2^*}{|A_1|^2 + |A_2|^2} = \alpha, \qquad (2)$$

with α a number independent of the particular channel being considered.

To prove this result, we recall that if CPT (but not necessarily CP) is conserved, then K_1^{0} and K_2^{0} are given as linear combinations,²

$$K_{1}^{0} = pK^{0} + q\overline{K}^{0},$$

$$K_{2}^{0} = pK^{0} - q\overline{K}^{0},$$
(3)

where p and q are in general model-dependent complex numbers satisfying

$$|p|^2 + |q|^2 = 1$$

but subject to no other general conditions. A simple calculation gives

$$\frac{2\operatorname{Re}A_{1}A_{2}^{*}}{|A_{1}|^{2}+|A_{2}|^{2}} = \frac{|p|^{2}|A|^{2}-|q|^{2}|\overline{A}|^{2}}{|p|^{2}|A|^{2}+|q|^{2}|\overline{A}|^{2}},$$
(4)

where A and \overline{A} are the amplitudes for K^0 and \overline{K}^0 decay into the channel. But for a self-*CPT*conjugate channel with phase shift δ (and no final-state mixing with other channels), *CPT* invariance tells us that

$$\overline{A} = \pm e^{2i\delta} A^*, \qquad (5)$$

so that $|A| = |\overline{A}|$, and Eq. (3) gives Eq. (2) with α taking the channel-independent value

$$\alpha = |p|^2 - |q|^2.$$
 (6)

We first apply this result to the 2π channels in order to set an upper limit on α . From the known rates⁴ of $K_1^0 \rightarrow 2\pi$ and $K_2^0 \rightarrow \pi^+ + \pi^-$, we learn

$$|\binom{2}{3}^{1/2}A_{2}^{T=0} + \binom{1}{3}^{1/2}A_{2}^{T=2}|$$

$$\simeq (1/450)\binom{2}{3}^{1/2}|A_{1}^{T=0}|, \qquad (7)$$

while the conservative estimate⁵ that $\Gamma(K_2^0 \rightarrow 2\pi^0) < \frac{1}{2}\Gamma(K_2^0 \rightarrow 3\pi^0)$ yields

$$|\binom{1}{3}^{1/2}A_{2}^{T=0} - \binom{2}{3}^{1/2}A_{2}^{T=2}| < (1/55)\binom{2}{3}^{1/2}|A_{1}^{T=0}|.$$
(8)

From (7) and (8) we conclude that $|A_2^T = 0| < (1/100) |A_1^T = 0|$, so (2) tells us that

$$|\alpha| < 1/50. \tag{9}$$

Actually, any reasonable model would require $\Gamma(K_2^0 \rightarrow 2\pi^0) \approx \Gamma(K_2^0 \rightarrow \pi^+ + \pi^-)$, in which case the actual value of α would be much smaller. For instance, if the $\Delta I = \frac{1}{2}$ rule applies in $K_2^0 \rightarrow 2\pi$ decay (which it well may not), then $|\alpha| \approx 1/225$.

Now consider the decay mode $K_{1,2}^{0} \rightarrow \pi^{+} + \pi^{-}$ + π^{0} . In general, there would be seven different amplitudes with T = 0, 1, 2, and 3, but centrifugal barriers strongly suppress all but the two completely symmetric amplitudes, with T = 1 and T = 3 (and also prevent final-state mixing with the other asymmetric T = 1 configurations). The $\Delta T \leq \frac{3}{2}$ rule then forbids T = 3, so the decay amplitudes $a_{1,2}$ are purely symmetric, with T = 1. Our theorem can therefore by applied, and gives

$$\frac{2\operatorname{Re}a_1a_2^*}{|a_1|^2+|a_2|^2} < 1/50.$$

If $|a_1| \approx |a_2|$, then a_1 and a_2 must be relatively imaginary to within about 1°.

We are grateful for conversations with F. S. Crawford, Jr.

*Research supported in part by the U. S. Air Force Office of Scientific Research, Grant No. AF-AFOSR-232-63.

†Alfred P. Sloan Foundation Fellow.

¹J. A. Anderson, F. S. Crawford, Jr., R. L. Golden, D. Stern, T. O. Binford, and V. G. Lind, Phys. Rev. Letters 14, 475 (1965).

²T. D. Lee, R. Oehme, and C. N. Yang, Phys. Rev. <u>106</u>, 340 (1957). We follow the convention of these authors in using K_1^{0} and K_2^{0} to denote the long- and short-lived components, which in general are not the same as $K^{0} \pm \overline{K}^{0}$.

³The authors of reference 1 have, at our suggestion, reanalyzed their data with the additional constraint $\operatorname{Re}(a_1/a_2) = 0$. They then find $\operatorname{Im}(a_1/a_2) = +0.90 \pm 0.50$. The corresponding intensity ratio is $\Gamma_1/\Gamma_2 = 0.81 \pm 0.65$, giving betting odds of 10 to 1 that Γ_1/Γ_2 is less than 2.5, and 100 to 1 that it is less than 5. The effect of the additional constraint is to reduce their upper limit on Γ_1/Γ_2 by a factor of two. They still cannot rule out $\Gamma_1/\Gamma_2 = 0$. (Private communication from F. S. Crawford, Jr.)

⁴J. H. Christensen, J. W. Cronin, V. L. Fitch, and R. Turlay, Phys. Rev. Letters <u>13</u>, 138 (1964).

⁵F. S. Crawford, Jr., private communication.

MIXING MODEL FOR SCALAR MESONS*

Laurie M. Brown

Northwestern University, Evanston, Illinois (Received 10 March 1965)

Indirect evidence has been presented for two isoscalar mesons of spin and parity 0⁺: the sigma meson¹ of mass $m_{\sigma} \approx 400$ MeV and the epsilon meson² of mass $m_{\epsilon} \approx 750$ MeV. This situation is reminiscent of the $\omega - \varphi$ mixing problem and suggests that a similar model may be appropriate. It is well known that if the observed ω and φ mesons are assumed to be given by the orthogonal states

$$\begin{split} |\omega\rangle &= \cos\lambda |\omega_{0}\rangle + \sin\lambda |\varphi_{0}\rangle, \\ |\varphi\rangle &= \sin\lambda |\omega_{0}\rangle - \cos\lambda |\varphi_{0}\rangle, \end{split} \tag{1}$$

where ω_0 and φ_0 are hypothetical pure SU(3) singlet and pure SU(3) octet members, then there exists a "mixing angle" λ such that the decay properties of ω and φ are well explained and φ_0 has a calculated mass which satisifies the Gell-Mann-Okubo relation with the other members, ρ and K^* , of the vector octet.³ We will show that if σ and ϵ are similarly assumed to be mixtures of hypothetical pure unitary singlet and octet isosinglet members σ_0 and ϵ_0 , the $T = \frac{1}{2}$ member of the octet being κ (725), then a T = 1 meson ξ is predicted, decaying predominantly into $\eta + \pi$. The ordering of masses in this scheme is that suggested by various bootstrap calculations.⁴

We shall regard as input data the masses and

widths of σ and κ . One additional datum is needed to completely determine the scheme and, for simplicity, we shall take for the mixing angle λ the value $\sin \lambda = 1/\sqrt{3}$, which will be shown to be reasonably consistent with the not very well-established properties of ϵ .

Noting that the orthogonal matrix

$$S = \begin{pmatrix} \cos\lambda & \sin\lambda \\ \sin\lambda & -\cos\lambda \end{pmatrix},$$
 (2)

formed of the eigenvectors (1), brings the masssquare matrix

$$M^{2} = \begin{pmatrix} \sigma_{0} & x \\ x & \epsilon_{0} \end{pmatrix}$$
(3)

to diagonal form (where σ_0 and ϵ_0 are squared masses of the particles and x is a mixing mass), we obtain

$$x = \sqrt{2} (\sigma_0 - \epsilon_0)$$

$$\sigma = 2\sigma_0 - \epsilon_0,$$

and

$$\epsilon = 2\epsilon_0 - \sigma_0; \tag{4}$$

hence, from the Gell-Mann-Okubo relation.

$$\xi = 4\kappa - 3\epsilon_0$$

= $4\kappa - 2\epsilon - \sigma.$ (5)