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intrinsic symmetry breaking) to E&, i&. It is
therefore an attractive possibility that the S
matrix itself belongs to Dy'+y'.

The conclusion of our discussion is that in-
corporating M(12) symmetry-breaking kinetic-
energy effects to all orders restores the uni-
tarity of the S matrix but reduces the symme-
try to (Poincard group) SSU(3). However,
treating kinetic-energy effects in a perturba-
tion-theoretic way (as done a.bove via the kine-
ton technique), many of the results of "exact
M12 ' survive in the lowest orders in kineton
emission.
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There has recently been much discussion
over the theoretical interpretation of some of
the peaks in meson systems which occur at the
same energies as was predicted by Pais and
Nauenberg' using the so-called Peierls mech-
anism. ' A peak in the mp system at energy 1.08
BeV, called the A, resonance, has been found
by several experimental groups, ' ' the energy
being the same as the Pais-Nauenberg predic-
tion. ' The theoretical understanding of this
peak, however, remains unsatisfactory to this
day because of the argument, by Goebel and
others"' that the singularity in the ~p production

matrix element due to the mp intermediate state
is actually far away from the physical sheet.

In this note we wish to re-examine the reac-
tion

While we accept, the Goebel argument, we find
nevertheless that a peaking occurs at the ener-
gy originally suggested. This is due to specif-
ic kinematic features of the m+P reaction. %e
find these features:

(1) The interference between the two modes
of rr+p prooduction, viz. va (v v& ) vs (w~ w )
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xm~+, leads to a peak at the Pais-Nauenberg
energy. This peak would, however, almost
be swamped by the background were it not for
the N* subtraction.

(2) Experimentally, the predominance of
N*p production necessitates the subtraction
of N ~ = (v P) and N&*= (w& P) "backgrounds. "

a a + — + +But a substantial part of the v~ (~ ~& ) =vn p0k
phase space is automatically suppressed by
the N~* subtraction, and the subsequent effect
on the expected theoretical rate of mp produc-
tion is quite marked.

We discuss in detail the reaction

FIG. 1. Bose symmetrization of the 7|p final state.

M = mass (p), and I'=100 MeV p width.

We now show that the interference between
the two modes of ~+p' production gives a peak
at the Peierls energy. Let us write the total
matrix element symbolically as

We define (see Fig. 1)

o= (p, + -k-)', T -=-(p, + k)',
m Kr on v'r

a
0-M2+iM1 z-M'+iM1 '

~, -=-(p+ p, )', ~.= -(p+ p,)',

t -=-(p, +p, +k)', s =--(p+p, +p, +k)',

P =(p+p +p +k) =total initial momentum,
1 2

=(p +p +k) =total (w++v++w ) momentum.

We shall also call p = mass (~); m = mass (p),

for the simple illustrative case of a s-wave

p resonance, where we have used' the complex
mass for the p meson. The p-meson singular-
ity of M is close to the physical sheet, where-
as the Peierls singularity of 5R may not, ac-
cording to the Goebel argument, be close to
the physical region.

The total rate for vp production is (over all
phase space)

g= Idt P @5(p+Q P) P' P-' 6(Q P,-P,-k) IM-I'.
4pp@p ~ BP10@20~0

Accepting the Goebel result, we assume 3Ra, Sty to be relatively constant over the phase-space region
of interest, in which case Bose statistics demands gft, =~~. For our purpose here, we ignore the
presence of a genuine resonance at t = (1.25 BeV)'.

The expression for the rate then reduces to

v [s-(Kt +m)']'"[s-(v't-m)']'" ) I
& rr'

0

(2)
1

'(~ m')' M' r*' '
o M' ur -~ I' ~ Mr)---

The two squared terms give a smoothly varying function of the type (f'/M - 0)

2s

The interference term is appreciable only for that range of t where both o. =M' and also T =M'.
This range of t can readily be worked out to be

2M + p' ( t ( (M'- y, ) / p.
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The interference term integrates numerical-
ly to a curve as shown in Fig. 2. The peak will
very easily be swamped by the pure ~p back-
ground.

The reason for the interference peak to be
in the same energy region as the Peierls sin-
gularity peak is almost trivial. The Peierls
singularity occurs over that range of t where
the ~a+py' can become a a~+pa' state by reshuf-
fling one real, physical pion (Fig. 3). But that
is the same range of energy where (n~+w ) and

(»6 ) can both simultaneously have the p me-
son mass, which is the interference region.

%e proceed now to discuss the effect due to

FIG. 2. Rate for ~p production with no N* subtrac-
tion {plotted with i5Ri assumed constant). s =(total en-
ergy) is 7.023 {BeV) corresponding to a 3.3 BeVjc in-
cident beam.

FIG. 3. Peierls mechanism for r+p .

subtraction of N* background. Experimental-
ly, it was found that v++p —p +N*++ dominates
the observed reaction v++p-~++~++a +p,
and it was therefore necessary to subtract out
the so-called N ++ background.

The subtraction procedure consists of cutting
out that part of the phase space where (n~ P)
and/or (w& P) form a N ++ mass. In other
words, the rate of ~ m Tl p production that is
to be compared with experiment is

= fd[6 6(N-')-6(N ")+6(N *)]iMi', (4)

where 6'(N ") is the N* phase space due to (v +P)a a
combination, similarly with 6'(N& ), and 6'(N~6 )

is the overlap phase-space region where both

(sn P) and (s6+P) fall in the N* band.
Note that with this subtraction procedure, the

K*p part of the total matrix element is complete-
ly suppressed, and it does not matter if Wa, Sty
have induced variations in the N region. '

To illustrate quantitatively the effect of such
a subtraction procedure on mp production, we
carry out a simplified analysis of Eq. (4). For
the integration over the Na, Ny, +ay region,
a good approximation for IM1 is

Imt I'iMi:— (s6(o M)+ s6(7--M )+ v I'M6(o M)6(v-M)), -
where the first two terms are the background, and the third term represents the interference. The
background contribution to the Na +Ny integral is

dI dv —1-

w~ (s -m -t)(v, -m —iL ) + [(s-m -t) -4m t] [(v,-m -p') —4p m ]+ 1 4~ ~ ~2 ] v ~2 p2 s pyg2 f 2 4m2)»2 (6)

where the limits of integration for the first term
are those appropriate to the phase-space con-
figur ation

ing to

(PP, ) = N*, (PP) = p,
(PP,)=N*, (P.t)=p,

while the second term has limits correspond-
and v, is integrated over (m*-6)' to (m*+ 6)'
wherever permitted. (n" = mass of N* = 1.238
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BeV, a =0.100 BeV. )
These subtraction terms are not small com-

pared with the pure mp background. The rea-
son is kinematical. For example, fix v, = -(P
+p, )'=(1.238)', then in the sp rest frame (Q=0),
it is easy to show that when P, forms a p me-

son with A, it also at the same time falls in
the v, region when combined with P. The range
of values of t in the mp spectrum for which this
is true varies, of course, according to the cho-
sen value for v, .

The overlap term d6'~ * can also be inte-
ab

grated to yield

m4

dt dv dv, —s+ p. -v, -t -4m M

and the interference term contribution to the N~ + N~ integral is

J 4

dt dv —2@I"M t- M+ILL ' " t- M-P. ' (8)

omitting the interference contribution to N &,
which is negligible.

The point now to note is that in the neighbor-
hood of t = 1 the N~ and Ny* subtraction serves
to suppress quite effectively the pure mp back-
ground, and the interference mp peak therefore
survives [Fig. 4(a)]. The remainder of the mp

spectrum (f ) 1.5) is not as much suppressed.
An interesting point now arises with the ob-

served reaction

7T +P iT +71' + 7 +P.

m. +po production {with N" subtraction)
——m+po background {with N subtraction)

Q. Q4 — ----- Interference {with N subtraction)
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FIG. 4. (a) Rate for 7r+p production with (~,+p), (m, +P)
=N* band subtracted out (I5III assumed constant). s is
still at 7.023 (BeV) . Note that this graph is plotted on
the same scale as Fig. 2. (b) Corresponding rate for
x p production in the same 3.3-Bev/c experiment.

0 +

Here only one N combination is subtracted out,
viz. (w+p). In our present notation it means that
only the (pP, ) = N, (P,k) = p configuration is sub-
tracted, i.e. , Eq. (6). This one subtraction,
however, is not sufficient to prevent the rapid-
ly rising pure mp background from almost swamp-
ing the interference peak. This would explain
the experimental fact that no sizable 1.09-BeV
np resonance seems to be present in the m'p+

channel.
The interference nature of the peak produced

here agrees with the observed data (see, e.g. ,

reference 3) in the sense that most of the events
contributing to the A, peak consist of the so-
called "double-p" events, i.e., events in that
region of the dod~ Dalitz plot where the two

p bands cross.
In this paper we have not analyzed our model

in terms of angular distributions (i.e., the dadT
Dalitz plot). A realistic calculation would have
to include the effects of the p spin, which af-
fect the dodT distribution. However, it is to
be expected that the effects of N subtraction
are not uniform along the p bands. That is to
say, in the Dalitz plot, for fixed 0 in the p band,
the depletion in the population density due to
N* subtraction is not independent of T. It is
thus not correct to dismiss the "double-p" events
as being accountable by simple overlap of two
assumed uniform p bands. This simple test
was used to reject the A, as an interference
enhancement in reference 3.

A more direct test' for the interference na-
ture for the A, peak may be the following. Take
vp events with cr, T satisfying M ~O, T ~M'+2MI',
and call these mp) events. Assuming that after
the N* subtraction only the interference peak
survives, it can readily be shown from the na-
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ture oi the overlap integral (p - 0)

v I'M

2t "
~p events

]. 1
xRe

cr-M +iMl 7.-M -iMI

that the peak shifts from t = 2M' to

t = 2M'+ 4Mr+ o(r'),
while the height reduces from (~'rM/2to)(q~')
to

v IM
2(t, + 4Mr)

Similarly, take ~p events with v, T satisfying
M'-2Ml" - cr, 7 ~ M', then the peak remains at
t =2M', while the height is now at (w'rM/2to)
x(l.87).

Experimentally, this would imply that the
sample of ~p& events merge with the A, peak,
while the sample of ~p events would stay put,
albeit reduced in size. In contrast, a bona
fide resonance would show no shift in the posi-
tion of the peak as ~p& and up& samples are
taken.

Again we emphasize that in the realistic situa-
tion, the amount of shift as well as actual re-
duction in size of the interference peak depends
somewhat on the spin correlations as well.
Our model is merely suggestive.

The analysis presented in this note is clear-
ly indicative of what a more accurate computer
program might accomplish in fitting with the
~p data, manual calculations being an over-
whelming handicap. It is quite interesting that
the interference peak may in the end be the
representative of the Peierls-Pais-Nauenberg

peak.
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