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ing pole at the same point due to a discontinu-
ity in 5.

The N function also has branch points at s, ,

and s~* on the physical sheet, so the full am-
plitude A» is analytic at these points. If we
analytically continue D given by Eq. (8) into
region II, we find the exponential factor gives
a simple zero at s = s~, so D has a square-root
zero at the position of the resonance pole.
This combines with the inverse square-root
singularity of N to produce a simple pole in
A» as required.

If l is further decreased and the forces are
sufficiently strong, the resonance pole moves
onto the physical sheet as a bound state. Dur-
ing this continuation procedure both s~ and s~,

*

move onto the real axis below threshold, but
to different positions. One migrates to the
position sB corresponding to the bound state;
the other moves to the point s~ which corre-
sponds to a zero of S„on the physical sheet
or a pole of S» in region II below threshold.
Also during this continuation, a simple zero
emerges from the exponential factor in Eq. (8)
and moves to s=sB, giving D a square-root
zero at s = s~. Displaying the branch-point
singularities in N and D at sB and sz, we have

(10)

%e wish to acknowledge the advice and en-
couragement of Professor M. L. Goldberger.

s -s
D(s) =D(s)

z
The functions X and D are free of extraneous
branch cuts; there is now an ordinary-type
CDD pole at s = sz, and D has a simple zero
at s =sB. It is also possible to eliminate the
CDD cuts even before the resonance pole has
emerged onto the physical sheet as a bound
state by multiplying the N and D functions by
appropriate factors. The resulting N and D
functions, however, are not the analytic con-
tinuations from high l. Moreover, the location
of the CDD pole will generally have no simple
relation to the poles or zeros of S» as is the
case in Eq. (10). This is discussed in more
detail in reference 4.

We remark finally that it is clear from our
discussion that a necessary (and for most cases
sufficient) condition that the Frye-Warnock
equations give the many-channel result for
A» is that there be no zeros of S» on the phys-
ical sheet which retreat into the inelastic l

D(s) = f, (s)
B

N(s) =f (s)[(s -s)(s -s)j
2 B z (9)

N(s) = N(s) s -s

Branches of the square-root functions in Eq. (9)
are selected to make N and D real below thresh-
old in the appropriate interval. It is now pos-
sible to define new N and D functions N and D:
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M(12) symmetry, "' as has been previously
emphasized, is intrinsically broken. The ki-
netic-energy effects and the subsidiary condi-
tions that project out the physical particle states
break unavoidably the symmetry. The concept

of "exact M(12) symmetry" is therefore in con-
flict with such basic principles of quantum the-
ory as the unitarity of the S matrix. ~ It is im-
perative to formulate the theory incorporating
the intrinsic symmetry breaking from the be-
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ginning.
In this paper we wish to present an attempt

in this direction.
In order to have a model, let us co@sider 36

mesons (M) grouped in a 143 representation
of M(12) in interaction with six quarks (Q) be-
longing to 12.4 M(12) requires the QM vertex
to be'

propagator, we then get, to lowest order in

SU(3) breaking, terms of the type

((M(z, M))) and ((My {M,X Jy )),

which will induce splittings in the SU(3) multi-
plets. We obtain in this way the well-known
mass formulas

yk =k -p, k-m =k -p, & = p.

with

I'qM = Q (t ')M (q)@g(P), In order to avoid X(960)—rl(550) mixing, we

have to include also terms of the form

0 =P'-O' M(v) =(I/6 m)(ye+~)(y P+y v ),
I/2

5

P and V& being the familiar SU(3) pseudoscalar
and vector meson matrices and Q the 12-com-
ponent quark spinor.

Consider now the self-energy graphs of the
mesons of Fig. 1. Knowing the QM vertex, we
can calculate the meson self-energy parts which
will be given by divergent integrals. Since we

are, however, interested only in the spin-uni-
tary-spin structure of the self-energy parts,
we can provisionally cut off the integrals and
thus obtain typically terms of the form

S = ((MM)) = (P'+ V '),
6 =((My,My, )) =0,

v =-,'((o Mo M)) =(P'-V'),
PV PV

~ = (( y My M)) = -(P'+ V'),

8 =((fy y Miy y M)) =(V -3P2)
p, 5 p. 5

[with M(q) =M(-q)] multiplying the integrals.
In (3) we have used the notations

((A)) = Tr Tr A and (A) = Tr A.
Dirac SU(3) SU(3)

Whereas S, 6', and 'U contribute equally to the
I' and V masses, this is not the case for ~ and
Q. %'e thus see that via the 6 and v' terms the
degeneracy of the P and V mesons is lifted.
Inserting a Gell-Mann-Okubo term in the quark

8

P (PX PX.). .
i=0

Such terms can be constructed in various ways,
e.g. ,

8

P ((a(My ~.My ~ +M~.y Z.Mfy Xf)
1=0

+(1—a)(Mx~x. +My pe g.
s i 5s 5i

+-,'Mo XMv A. )),
PV i PV i

and' they appear indeed from graphs of the type
of Fig. 1. For baryons the same procedure
yields the well-known Gursey-Radicati mass
formula. '

What we have done so far is a systematic
application of the technique of "kineton emis-
sion, "discussed in an earlier publication, ' to
the mass splittings of the mesons.

We now wish to apply the kineton technique
to vertex functions and scattering amplitudes.
Consider the meson-baryon vertex function

If we insert the corrections to all or-
ders in kineton emission, i.e., consider all
graphs of the type of Fig. 2, the symmetry is

FIG. 1. Meson self-energy graphs. FIG. 2. Corrections to M(12) vertex.
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broken down to (Poincard group)@SU(3). Lim-
iting ourselves to lowest order in kineton emis-
sion, ' and making extensive use of the Barg-
mann-signer equation, we find

rMB =F1(V )g (p')g, (p)M

+F2(V )g y(p')C
Z

(p)[y(p+p')M(~)l,

(with q =p'-p), and only one new form factor is
introduced in addition to the "exact M(12)" form
factor. Since the second term in (4) only cou-
ples the SU(3) singlet [(~)'"&u-(—', )" y] vector
meson to baryons, it is obvious that the pre-
dictions of M(12) for electromagnetic and weak
form factors and pseudoscalar meson-baryon
eouplings (D/F = &) stay unchanged.

%'hen we apply the same technique to scatter-
ing processes, the violation of unitarity is step-
wise eliminated. For the simple case of super-
scalar-quark (SQ) scattering, we find that to
lowest order in kineton emission, the scatter-
ing amplitude is of the form

u (p')u (p)A(s, t)+u (p')y(k+0')u (p)B(s, t)

(in an obvious notation), and thus unitarity is
restored. This is not so in general, however.
In particular, for the less trivial case of SM
scattering, unitarity is restored only in higher
orders of kineton emission, '0 whereas to low-
est order unitarity is still violated. "

%e now wish to point out a possible connec-
tion of the theory of kineton emission with the
infinite-dimensional unitary representations
(idur's) of SM(12). In the following (without loss
of generality), we restrict ourselves to the
semisimple noncompact group SM(12), obtained
by dividing a U(1) out of M(12). Let us consid-
er a supermultiplet of particles at rest belong-
ing to the representation D of SW(6), the maxi-
mal compact subgroup of SM(12). The kinetic
energy belongs to the representation T = (6, 6~)
+(6*,6) of SM(12).' If the particles of D are
moving, they will not any more belong to the
pure representation D of SW(6), but rather
pick up (due to kinetic-energy effects) compo-
nents from all representations contained in
the reduction of

n
D n=0

Thus a moving supermultiplet, due to the in-
trinsic symmetry breaking, is to be described
by an infinite sequence KD of SW(6) represen-
tations. Ne shall call ED the kinetic sequence
of D. Since a finite-dimensional nonunitary
representation F of SM(12) contains only a fi-
nite number of SW(6) representations, it does
not completely describe a moving supermulti-
plet, and this is presumably the cause for the
"unitarity problem. " The natural mathemat-
ical objects to describe moving supermultiplets
are thus idur's of SM(12). In general, there
are continuously many idur's for a noncompact
group. Because of the rank of SM(12) being
equal to that of its maximal compact subgroup
SW(6), SM(12) has, in addition, a discrete se-
ries of idur's. This discrete series has been
studied by Harish-Chandra, ' who has shown
that for any finite-dimensional representation
F of a semisimple noncompact group G there
exist precisely two idur's, SF and X)F' in the
discrete series of G that have the same infin-
itesimal character as F and can be represent-
ed over the space of holomorphic functions on

G/A, A being the maximal Abelian subgroup
of G. X)F and SF' can be reduced with respect
to SW(6) using a set of rules due to Blattner. '3

As a result of such a reduction we find'

X) = (1, 1) + (6,6*) + (21,21*)+ (15,21~) + (6 ~, 6) + ~ ~ ~,

&, = (6, 1) +(21, 6*) +(15, 6*)+ ~ ~ ~,

&ygp = (6i 6 ) + (21 q
1 5*) + (56& 56*) + (70i 70*) + ' ' '

&

Gp64: (56i 1) + (126& 6*) +

From the lower terms that we have worked
out we see that I)F contains that SW(6) repre-
sentation which is obtained from F at rest and
members of its kinetic sequence. The SF"s
contain the parity conjugate representation and
members of its kinetic sequence [e.g. , SM4'
starts with (1, 56)].

It is an interesting possibility that SFSF
contains a parity-complete SW(6) representa-
tion, its full kinetic sequence and nothing else.
In all cases considered so far we have found
no exception to this rule, though we were not
able to prove it for the whole infinite kinetic
sequences of SW(6) representations. "

It is interesting to remark that the S matrix
calculated from a Lagrangian with an M(12)-
invariant interaction part will belong (due to
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intrinsic symmetry breaking) to E&, i&. It is
therefore an attractive possibility that the S
matrix itself belongs to Dy'+y'.

The conclusion of our discussion is that in-
corporating M(12) symmetry-breaking kinetic-
energy effects to all orders restores the uni-
tarity of the S matrix but reduces the symme-
try to (Poincard group) SSU(3). However,
treating kinetic-energy effects in a perturba-
tion-theoretic way (as done a.bove via the kine-
ton technique), many of the results of "exact
M12 ' survive in the lowest orders in kineton
emission.
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discussions on the kineton technique. Illuminat-
ing conversations on the theory of infinite-di-
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pact groups with Professor R. Blattner and
Professor Harish-Chandra are gratefully ac-
knowledged.

~K. Bardakci, J. M. Cornwall, P. G. O. Freund, and
B. W. Lee, Phys. Rev. Letters 13, 698 (1964); 14,
48 (1964).

28. Sakita and K. C. Wali, Phys. Rev. Letters 14,
404 (1965); A. Salam, R. Delbourgo, and J. Strathdee,
Proc. Roy. Soc. (London) A284, 146 (1965). See also
M. Beg and A. Pais, Phys. Rev. Letters 14, 267 (1965).

3J. M. Cornwall, P. G. O. Freund, and K. T. Mahan-
thappa, Phys. Rev. Letters 14, 515 (1965); R. Blanken-

becler, M. L. Goldberger, K. Johnson, and S. B. Trei-
man, Phys. Rev. Letters 14, 518 (1965); M. Beg and
A. Pais, Phys. Rev. Letters 14, 509 (1965).

4We do not count redundant components, and there-
fore the supermultiplicity (e.g. , 36) is smaller than
the M(12) dimensionality.

5P. G. O. Freund, to be published.
a is an arbitrary parameter.
F. Gursey and L. A. Radicati, Phys. Rev. Letters

13, 173 (1964).
K. Bardakci, J. M. Cornwall, P. G. O. Freund, and

B. W. Lee, Phys. Rev. Letters 14, 264 (1965). In ref-
erence 1 it was already emphasized that kineton pair
emission is the phenomenon underlying the SU(6) mass
formula. It is also remarkable that we predict the co-

y mixing angle as opposed to the less powerful nonrela-
tivistic considerations of M. Beg and V. Singh, Phys.
Rev. Letters 13, 418 (1964).

To lowest order, kineton emission from a vertex
amounts to the emission of the spurion yK, K being any
of the external momenta of the vertex. In higher order,
also terms like (&5)~&(.Y5)zibi or (&g K)~y(&@K')~ &
etc. , appear.

We call a particle belonging to 1 of M(12) a super-
scalar.

i~We have investigated this case in collaboration with
R. Blankenbecler and L. F. Cook.

Harish-Chandra, "Discrete Series for Semisimple
Lie Groups I" (to be published).

R. Blattner, private communication.
i4Note that even the trivial representation has two cor-

respondents in the discrete series of SM(12).
5The problems of writing wave equations for the rep-

resentations of the discrete series and of calculating
the Clebsch-Gordan coefficients for products of idur's
are not yet solved.

ANALYSIS OF Ai PEAK IN THE rp SYSTEM

N. P. Chang
The Rockefeller Institute, Net York, New York

(Received 25 January 1965)

There has recently been much discussion
over the theoretical interpretation of some of
the peaks in meson systems which occur at the
same energies as was predicted by Pais and
Nauenberg' using the so-called Peierls mech-
anism. ' A peak in the mp system at energy 1.08
BeV, called the A, resonance, has been found
by several experimental groups, ' ' the energy
being the same as the Pais-Nauenberg predic-
tion. ' The theoretical understanding of this
peak, however, remains unsatisfactory to this
day because of the argument, by Goebel and
others"' that the singularity in the ~p production

matrix element due to the mp intermediate state
is actually far away from the physical sheet.

In this note we wish to re-examine the reac-
tion

While we accept, the Goebel argument, we find
nevertheless that a peaking occurs at the ener-
gy originally suggested. This is due to specif-
ic kinematic features of the m+P reaction. %e
find these features:

(1) The interference between the two modes
of rr+p prooduction, viz. va (v v& ) vs (w~ w )
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