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be compared with the experimental value?

R =(3.3£0.6)x 107, (24)
expt

(3) Hyperon nonleptonic decays should exhibit
a 0.2% T-nonconserving effect. This is evident
since the strangeness-changing T-invariance
violation may proceed through the 27 piece of
S'p’ ~S,pscosb sin®0 +++ -, which is a factor
A sin%6 ~ 1/500 smaller than the usual T-conserv-
ing interaction. The AS =0 weak nuclear pro-
cesses, on the other hand, should exhibit a 7T-
violating effect of order 4%, since here there
is an octet part to the weak T-violating Hamil-
tonian, and thus we may expect the T-violating
term to be only sin% ~1/25 smaller than the
T-conserving one.

(4) The T-conserving AS =0 WI amplitudes
satisfy an approximate A/=0 rule. Explicitly,

lall=1

mN sin?6.

For the AS =0 T-nonconserving amplitudes,
however,

1all=1

arn-o %

Consequently, in AS=0, |AI|=1 transitions,
T violation and conservation are comparable.

(5) Finally, the vector coupling constant for
strangeness-conserving 3 decays is not G, but
G cosf=0.98G. (Remember that our 6 is small-
er than Cabibbo’s angle by a factor of ~v2.)
This is to be compared with the experimental
value of (0.978+ 0.0015)G.**
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RELATIVISTIC TREATMENT OF SPIN INDEPENDENCE

K. J. Barnes
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(Received 5 March 1965)

There have been several interesting attempts®™
made recently to combine within one relativistic
framework the internal symmetries of the strong
interactions with their spin independence. The
purpose of this Letter is to present for rapid
evaluation and assimilation a somewhat differ-
ent treatment of the spin aspects of the prob-
lem. A brief survey of the difficulties involved
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in the usual approach to the problem is given
in order to clarify the subsequent derivation
of the new technique, but detailed applications
to the problem of combining spin and internal
symmetries will be reserved for presentation
at greater length in some more suitable pub-
lication.
In most usual treatments the infinitesimal
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transformations which may be performed on a spinor U(p) (in the absence of internal symmetries)
are taken to be the U(4) transformations or some subset of these. That is,

U(p)-SU(p)=[1 +z'ap["“]U(p) =[1 +z'(a11 tagyg +a“y‘u +a#5i'yu'y5 +3a #VOPU)],LL(P), (1)

where, it the parameters «,, are real, the sca-
lar product U(p)U(p) is invariant. If the spin-
or is to represent a free Dirac particle, then
S must commute with (g-m), and one obtains
immediately

1%

v
=pa,g=p a#V—O. (2)

a5—a“
The existence of this subset of transformations
allows, of course, for the definition of rela-
tivistic spin operators, for example, the Pauli-
Lubanski pseudovector wy = Le LVPA oVPpA and the
tensor w  , =ie pupAYpVSPA devised by Calogero.’
However, if now some interaction is envisaged,
the above considerations must be further ap-
plied to ensure that the outgoing particle de-
scribed by U(p’) remains a solution of the Dirac
equation U(p’)(#’-m)=0. Thus the final inter-
section of allowed transformations is specified
by

e =
U—p a 0, (3)

v WV N
a5—a =P au5-p au5_pa wy

K Hu

and forms only a four-parameter subset. The
remaining generators still yield a closed alge-
bra with a U(2) structure, which may be inter-
preted as a representation of a spin group, and
this circumstance has been employed® by the
present author and co-workers to obtain an
SU(6) theory which gives nonstatic results.
A desire for a larger and more flexible set
of generators has prompted several authors!~*’
to advocate that the transformations given in
Eq. (1) be employed without the above-mentioned
restrictions, and that the nonzero commutator
of # and S be interpreted as an “intrinsic break-
ing of the symmetry by the kinetic-energy terms.”
This concept of a relativistic symmetry which is
intrinsically broken in all except possibly stat-
ic situations seems to the present author not
entirely satisfactory.

The technique which is proposed here is to
accept that any symmetry which exists must
be dictated by the physics of the situation (i.e.,
the momenta of the particles involved, and their
interactions), and to accept the transformations
defined by Eqgs. (1) and (3) as the most general
set possible. Furthermore, it is proposed that

the free spinors of higher rank be assumed to
obey the Bargmann-Wigner® equations
o
) =m ,
ﬂa ¢OB'}’"' daBa},.-.
o
s

B ¢C!0‘y' . (4)

=m
S

etc.,

which are effectively the Dirac equation applied
separately to each index, so that the above ar-
guments may be generalized in an obvious man-
ner for the higher dimensional representations.
In particular, the second-rank mixed spinor
fbaﬁ(q), which will be assumed to transform

in the same manner! as z,tva(q)_zﬁB(CI), and which
may be written in the form

B_ "
<I>a —[9+<py5+zy YSF/.LS

B 1 MY B 5
SACIRS L ()
on application of the Bargmann-Wigner equa-
tions (with mass u and momentum q) yields
the set of relations
. .y
0=0, uF _=g¢ =iq" F
K 15 1#% LY =1q 5,
iuF

14
= - ,d =q F 6
w 9,9,7,9 wu q (6)

uy
and hence provides® a possible description?®
of pseudoscalar and vector particles!! described,
respectively, by the sets of functions (¢, F#S)
and (q)u, Fﬂu). Finally, it is proposed that
the interaction of free fermions with a virtual
boson shall be specified by the Lorentz-invar-
iant
#a3%0n Pe (p), 0

where the second-rank mixed spinor Aaﬁ is to
be formed from tbaB, #, #’, and scalar func-
tions of ¢, so that the interaction is further
invariant under the spin transformations (whose
generators commute with both g and p’).

To finally determine AQB, it is speculated
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that it must be formed from generators of the
full set of transformations

U(p) ~Sp(p,p')U(p), (8)

where Sp is defined by the following prope_rties:
(a) (B-m)SpU(p) =0=T(p")Sp(#’~-m); (b) U(p)
xU(p) and T(p")U(p) are invariants; (c) the
product of any two generators of these trans-
formations shall again be a generator. Thus
the closed set of generators defines a set of
transformations [hereafter referred to as the

5,(p,p)=1 +if(q2)au(ﬂ+M)

<{(# +m) TG em) + @m =g TH 4 (amP =g

PU(4) transformations] which not only is com-
patible with the free-particle Dirac equations
and preserves scalar products, but also has
the property that the generators of the corre-
sponding transformations
U(p’) -~ U(P’)Sp, ~Hp,p") 9)

are identical to those in Sp. This is, of course,
essential if these generators are to be identi-
fied as couplings of bosons to fermions, as
suggested above.

A suitable form for Sp subject to the above
restrictions is

Y210 g om) + (pr ) TP m),  (10)

where f(¢?) is an arbitrary function of the invariant four-momentum transfer squared, and the nor-
malization requirement that the generator with ['* =1 shall be the identity operator yields

FHg?) = 2(4m2-g?) [(4m?=q?) + 2m (4m?-¢®)'/?]. (11)

The mechanism is now sufficient to treat spin symmetry within the context of a relativistic S-ma-
trix theory dealing with free-particle states and three-particle vertices, where the spin symmetry
is now invariance under the transformations defined in Eqgs. (1) and (3), and the invariant coupling

is defined by Eqgs. (5) and (7), where

2[(4m2-q?) + 2m (4m2—q>) 2] A = (4m2=q®)d + (B +m) ®( " +m) + (dm2=g®)"2[(f+ m)® + ®( 4’ +m)].  (12)

Notice that the interaction may now be nonlocal.
The ultimate test of this technique is the com-

parison of its nonstatic predictions with exper-

iment, and although the task of combining this

type of spin symmetry with internal symmetries?!?

lies beyond the scope of this Letter, it is per-
haps appropriate to present the result of one
such calculation'® which does provide a crucial
test of this kind. By assuming that the vector
mesons dominate the electromagnetic interac-
tions of the baryons, and that the basic sym-
metry underlying the strong interactions has
as its generators all possible products of the
generators of the spin transformations with
those of the isotopic spin group,'* the follow-
ing relations between the electromagnetic form
factors!®»!® of the proton and neutron have been
obtained:

2
¢ =0, ¢,NaH=-36, @, a3
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and

¢, @ =em/we, ). (19)

The form equality in this last relation [which
is the only prediction actually dependent on
the PU(4) treatment of the couplings] has often
been speculated'® from the experimental data,
and has recently been most impressively con-
firmed'” by the Stanford electron scattering
group.

It should be noted that the “spin” transfor-
mations defined in this work are uniquely de-
termined by two independent four-momenta.
There is no obvious extension of the technique
to scattering amplitudes, and any restrictions
which the theory may place on such amplitudes
will be given by the implicit effects of three-
particle vertices [e.g., through the decompo-
sition of the scattering amplitude into single
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pole-exchange contributions, or through uni-
tarity]. Such questions, and the related prob-
lem of consistently and uniquely specifying the
three-meson vertices, are clearly matters for
further detailed investigation.

The author is indebted to F. L. Gross, F. von
Hippel, and D. R. Yennie for many stimulating
discussions.
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INELASTIC N/D PROBLEMS AND CASTILLEJO-DALITZ-DYSON CUTS*
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Several recent papers have discussed discrep-
ancies between many-channel N/D calculations
and the corresponding single-channel calcula-
tion with a given inelasticity coefficient.!™® We
have studied this question in a model-indepen-
dent way for theories where the partial wave
amplitude possesses a unique continuation in
the angular-momentum variable [.* For real-
istic input forces (left-hand cut contributions
to the amplitude) the S matrix S;j ~1 and the
corresponding amplitudes A;;~0 as I~ . This
leads at once to the conclusion that for high /
(or weak coupling) the Frye-Warnock® equations
and the Froissart® and Ball-Frazer” methods
all give the same result as many-channel N/
D.* This is consistent with findings of other
authors.!”s

Once having established that the Frye-War-
nock equations are correct at high /, we ana-
lytically continue the solutions to lower values
of I. As Bander, Coulter, and Shaw! illustra-

ted by specific examples, we also find the Frye-
Warnock equations generally no longer give

the right answer. Bander, Coulter, and Shaw,
as well as Atkinson, Dietz, and Morgan,® sug-
gest that this difficulty is connected with Cas-
tillejo-Dalitz-Dyson (CDD) ambiguities.

By means of our continuation in I, we find
that generally cuts are introduced into the D
function. These cuts emerge gradually from
the inelastic cuts as / is decreased. These
CDD cuts, as we indicate below, are strictly
an inelastic phenomenon, and it is the purpose
of this note to show how such cuts arise.

We write the elastic amplitude A,; as follows:

Ay, = (1/2ip)(S;,-1),

2ia (I ] s
Sy e io( ,s)=n(l’s)6216(l,s)

0sn<1, b6=Rea.

) ey

Here p is the phase space; 6 and 7 are real
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