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internal vertices by attaching a fictitious zero-
momentum external line to each of the internal
vertices. The resulting graph then belongs
to type I above.

Thus it suffices to discuss the reducibility
of a cp" vertex belonging to an unsaturated g„'.
The main difference in treating the reducibil-
ity for an unsaturated g„' versus that for g
is as follows: In gn, the perfect symmetry
makes it immaterial as to which vertex one
chooses to set up a system of base vectors
for the internal lines. Now for an unsaturated
g„', one must pick the vertex which has the
maximal complexity. Consider now the vertex
V with y" coupling [I external and (n-I) inter-
nal lines]. The procedure stated in paragraph (4)
can be modified to show that these (n-I) inter-
nal lines emerging from the vertex V cannot be
linearly independent in a v-dimensional space
for n & v+1. This is all that is really necessary
to force a reduction. The Hankel transform
method which we have used is just one formal
technique to handle this reduction.

It should be emphasized that for our present
purpose it is sufficient to establish the reduci-
bility of the rP vertex (hence the graphs). We
shall not discuss here the end products of the

reduction.
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U(12) AND TIME-REVERSAL ASYMMETRY IN THE WEAK INTERACTIONS~
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It has been indicated that the symmetry U(12)
may be useful in the study of strong interactions. '
The subgroups SU(6) and U(6)%8IU(6) have been
investigated in some detail with encouraging
results. ' In this note we postulate that two
U(8) subgroups of U(12) are pertinent symme-
tries for the weak interactions (WI). This, cou-
pled with the approximate lhI l= ~ rule, leads
"naturally" to a violation of time-reversal (T)
invariance in the WI with a branching ratio

as observed by Christenson et al. ' (l. and S
stand for the long- and short-lived K compo-
nents). The theory also requires that (1) there
be no T violation in leptonic decays, (2) there

be T violation only in the parity-nonconserving
piece of the WI, (8) there be T-violating effects
of order 4$ in strangeness-conserving weak
nuclear processes, and of order 0.2$ in non-
leptonic hyperon decays.

Experimental studies of leptonic decays leave
little doubt that the leptons l enter the WI only
through the combinationj & =ly&(1+iy6)vf
Theoretical arguments have been presented
which make such a world quite "natural. " Feyn-
man and Gell-Mann, ~ for example, assume that
the most "fundamental" description of a fermi-
on is given by a two-component object which
satisfies a second-order differential equation.
They further assume that it is precisely this
two-component spinor that enters the WI, there-
by obtaining the V-A theory. Feynman and Qell-
Mann argue in this manner not only for leptons,
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but also for the "bare" hadrons (strongly inter-
acting particles). This exclusion of scalar (s),
pseudoscalar (p), and tensor (t) pieces from
the hadronic part of the WI has not been experi-
mentally verified. In fact, the argument against
s, P, and t in nonleptonic decays rests solely
in our belief that there exist "fundamental" or
"bare" hadrons. While leptons may be "funda-
mental, "we have every reason to believe that
hadrons are not. Consequently, we postulate
(i) the existence of s, p, and t in addition to
the conventional v, a terms in the hadronic part
of the %I; the leptonic piece remains the same.

Although there is no a priori reason to believe
that the WI are in any way related to the strong-
interaction symmetries, the conserved-vector-
current theory~ and its experimental verifica-
tion' indicate that there may be some connec-
tion. Previously, this connection has been made
by assuming that the hadronie piece j&" of the
%I current J was equal to a linear combina-
tion of generator densities of U(3)8U(3)'~7:

j = (v '+iv ') + (a '+ia '),
1p. 2p. 1p. 2p,

where

v
1

v
1

cos8 +v
4

sing

v2
' =v cos8+v sin8 (p, =0, ~ ~ ~, 3),

2p. 2p. 5p.

and similarly for the axial currents ak '. The
%I was then written as

h=g(j +j )X +H. c. =gJ X +H.c., (4)

where X& is the intermediate vector boson.
Although the introduction of an intermediate
vector boson is not necessary, we will find it
notationally convenient. In the proposed theo-
ry, we connect the strong and weak interactions
with the assumption (ii) that

Z =g(aJX+J X +bJ X )+H.c.,

where a, b are presently phenomenological pa-
rameters presumably of order 1; where &,&
are scalar, tensor intermediate bosons; where
the "generalized current" densities J,J,J&
contain s and P, v& and a&, t» and t»

„& t& (tensor and dual tensor terms),
respectively, and where s, p, v&, a&, and t»
are linear combinations of the Hermitian gen-
erator densities of U(12). Since the s, p, and
t pieces vanish for leptons (e.g. , by the Feyn-

P =A~A. y5A,

kp, k p. 5

T =A&1 0 A
kgb k pp

(7)

(p. , v =0, ~ ~ ~, 3; 0 =0, ~ ~ ~, 8),

where we use the Feynman notation for the Di-
rac matrices, and A is a 12-component aee
field. Note that all 144 generators thus defined
are Hermitian.

From the point of view of the strong interac-
tions, an important subgroup of U(12) would
be that obtained by letting the index k range
from 1 to 3, and adding (2~)'~'x(@=0 generator
density) + (~&)'"x (k = 8 generator density). This
subgroup, designated by UI(8), is the strong-
interaction symmetry group we would deal with
in a world without strangeness; it is a direct
generalization of the familiar isospin. U(12)
possesses, in addition, the subgroups UU(8)
and Uy(8), which are the generalizations of
the U spin and V spin. ' These subgroups will
be of importance for the weak interactions.

~e select from Uy(8) the familiar v, a terms,
and from UU(8) the s, P, t objects. The genera-
tor densities of Uy(8) cannot be used directly
in the definition of the Qg, for we would have
no explanation of the nonstrangeness changing
(AS = 0) leptonic decays. However, we may
introduce b,S = 0 currents by picking them from
the generators of the group obtained by rotat-
ing Uy(8) either about the v„or vvo axis through
an angle w-28. The U(8) indices 6 and 7 are
chosen to introduce AS = 0, while v with the
space-time subscript 0 is taken to guarantee
that, under m-28 rotation, Lorentz transforma-
tion properties of the generator densities are

man- Ge 11-Mann argument),

=g[aj X+(j +j )X +bj X ] +H c. (6)
.6 . l . 6 . h

WI pv pv

Our final assumption comes in specifying pre-
cisely what combination of U(12) generator den-
sities should be chosen for j", j ", and j
To clarify matters, it is helpful to first write
down the generator densities in a quark or ace
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left invariant. Rotation about v6p or vip changes
Uy(8) into the group we will call UI '(8) or Uy'(8).
Similarly, rotation of UU(8) leads to UU'(8)
or Ufi (8).

If we were to treat Uy(8) and UU(8) in a sym-
metrical fashion but use rotations only about
one axis to obtain a WI theory, we would find
that I b,Sl =2 nonleptonic decays are allowed
(in contradiction to the measured value of the
KS'-KL ' mass difference). Both the rotations
about v«and v7p must come into play.

Explicitly, we find that under rotation about

V7p

to one; however, experimentally we only know

that the matrix element of the axial strangeness-
conserving current between neutron and pro-
ton has an effective strength of about 1.2. We
therefore prefer to leave the parameters un-
specified for the present. It is important, how-

ever, to make it clear that the predictions we

shall make do not depend on assuming particu-
lar values for them. Note that there are eight
charged v, a, and eight neutral s, P, t "currents. "

In detail,

. hj = —(s, +cP,) eos8 sin8
v —v = v cos8+ v sin8,

4p, 1p. 1p 4p.

—v 7 = v cos8+v sin8,
2p, 2p. 5p,

s, —s,7 = -s, cos8 sin8+s, (1-2cos'8)

+&3s, eos8 sin8,

(8)

+ v 2[s, + cp, +i (s, + cp, )] sin'8

+&3(s~+cps) cos8 sin8,

hj = [v +da +i(v +da )]eos8

+&2[v +da +i (v +da )] sin8. (14)
4V

7=S7 S2 S»

while under rotations about v«,

v - v '=v cos8+v sin8,
4V

v —v 6 = -v cos8+v sin8,
5p. 2p. 1p, 5p,

6
6 1 =See

s7 —s,' = s, cos8 sin8 +s, (1-2 cos'8)

—&3s, cos8 sin8,

(10)

with identical results for a~& replacing vy&
and pp, ty» replacing sp. If we impose the
condition Ib,S~ W 2 and treat Uy(8) and Ufi(8)
symmetrically, we are forced to consider only
t,he combination

(12)

h =t '+et
pv pv' (13)

where c,d, e are real parameters, presumably
of order 1, to be determined by experiment
or a future theory. It is usually assumed, for
example, that the constant d is precisely equal

2 "'[(s,'+is, ') + (s,'+is, ')]=- s',

similarly for P, v&, a&, and t». This leads
us to our final assumption (iii) that

.hj —si' +cjoy

h = v '+da

The result for j»" is similar to that for j".
We have absorbed an irrelevant phase exp(-iw/4)
into all objects that do not carry strangeness.
The angle 8 which we use here is different from
that introduced by Cabibbo, ' because of the v 2

multiplying the strangeness-carrying term in
hjp

0

Note that the SU(3) combinations occurring
in the s, P, t "currents" are all contained in the
U-spin subgroup. These "currents" therefore
carry one unit of U spin. The s, p, t part of the
effective weak Hamiltonian contains symmetrized
products of these currents; hence, it only has
U spin zero and two. The SU(3) content of the
s, P, t contribution to the strangeness-changing
part of the weak Hamiltonian is then pure 27;
the strangeness-conserving part, on the other
hand, contains in addition 1 and 8.

In the real world, where aces probably do
not exist, Eq. (7) no longer holds. However,
we may still keep the third assumption along
with the corresponding Eqs. (8)-(14) to obtain
a formulation of the WI.

We now discuss some consequences of the
theory.

(1) T invariance is violated only in the pari-
ty-changing part of nonleptonic decays. The
violation comes in through (sp) and (tt) inter-
ference, just as P and C violation come from
(va) interference. This would imply T-invari-
ance violation in K -2m, but not in K —3m.

T conservation in leptonic decays is consistent,
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with results obtained in neutron P decay and
may be further checked by measuring the p,

polarization out of the plane of decay in K+- p. +

+Pp +77

(2) The kaon branching ratio is

r(K '-~++))-)
L

R = +, + )-2x10
S

=
~ [e + 2iF ImA, /A, ] + 0(~') . (18)

Here, A, and A, are the I = 0, 2 K„2-decay am-
plitudes with A, chosen to be real and positive,
while

F = exp[i(5,-5,)],

where 5, and 52 are the ~v s-wave scattering
phase shifts for the I= 0, 2 states at the rest
mass of K . Next, we write

—M. +i(y +y )
e =, . +O(x'),

z 1 3v
=A,"f(m, -m )

(18)

where mS-m L is the KS'-KL' mass difference,
and M; is the imaginary part of the K-K mass
operator. Finally, w = )A,/A, l and O(a ') indi-
cates the presence of terms of order a' (a mea-
sures the validity of the IAII =-,' rule). " We
wish to estimate g+ . We find, first, that

A, =Ao[O(A. ) +zO(~ sin'6)]. (19)

The factor sin26) in the imaginary part is due
to the fact that T violation occurs as a result
of sp interference, and from Eq. (14) this is
seen to be suppressed by sin28 relative to the
T-conserving part of the interaction. The fac-
tor k is present in Eq. (19) because A, is a

l 4I) =-, amplitude. '
Next, let us turn to an estimate of e. As can

be seen from Eq. (18), we need to know M;,
y~, and y3~. Now in our theory, all leptonic
decays conserve T, and K'- 3m conserves T
as well since it is purely parity conserving.
Thus, y~ and y3p are nonzero only because of
our choice of phase of the K, state in requir-
ing A, to be real; y&/A0' and y3„/A0' are very
small, and may be neglected. For M;, we may

To obtain this branching ratio, we follow the
notation and results of Wu and Yang; we write

(15)

where

where A„(s) = )A„(s) I expiy„(s) is the off-ener-
gy-shell amplitude for the transition Ko-n,
and M„ is the total mass of n. That is, A„(s)
is the amplitude with which a Ko with mass v"s

would decay into the state n. The only states
in the summation over n which could possibly
be important are 2m in I=O and 3m.

Because of the specific form which the T vio-
lation takes, as can be seen from Eq. (14) and
from the fact that the j AS (

= 1 T violation is
pure 27, we know the phase is of the order
csin'8 for all s. For the 2m state with I=O,
we can then estimate that M;-A0'a sin'8.

The 3m state will give a smaller contribution.
The phase cp3~(s) (which in our theory happens
to be energy independent since K- 3v conserves
CP) is of order x sin'6, as in the 2r, f = 0 case.
However, we can expect IA3„(s) )'/A0' to be
small over much of the important energy range
in the integration. At s =mK', for example,
we know experimentally that the ratio )A3~(s) I /
A,'-10 '; for smaller values of s, it will be
even smaller. Above s =mK', the ratio will
grow, but it is nevertheless probable that the
over-all 3)T contribution to Mf/A0' will not rise
above a fraction of A. sin26.

Altogether, then, we find e~0(csin'6). Con-
sequently, we expect both the e and ImA, /Ao
terms to be comparable in Eq. (16), yielding

q = O(A. sin'6),

R = O(a' sin'6) = 0 x (0.184)'2 4

650

= O(2x10 ).
Here, a' is estimated from the experimental
ratio

r(K'- 2~)
r(K '- 2~) 850'

S

(21)

(22)

while tan6) is essentially given by the ratio of
the I AS j = 1 to I AS I

= 0 weak-interaction strength:

1 (K+- pv)

r(w+-pv) m 1-(m /m )'
= 2 tan'6 —, . (23)

7T P, jT

This yields 6) ~0.19. Our estimate of R is to

write the expression

M g= —f, , !A (s)l'sin2ii (s), (20)
n n K
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be compared with the experimental value

R = (3.3+ 0.6) x10
expt

(24)

ing and valuable conversations.

(2) Hyperon nonleptonic decays should exhibit
a 0.2% T-nonconserving effect. This is evident
since the strangeness-changing T-invariance
violation may proceed through the 27 piece of
s'f ' - s,P, cos6) sin~6) + ~ ~ ~, which is a factor
x sin'{) - 1/500 smaller than the usual T-conserv-
ing interaction. The AS = 0 weak nuclear pro-
cesses, on the other hand, should exhibit a T-
violating effect of order 4%, since here there
is an octet part to the weak T-violating Hamil-
tonian, and thus we may expect the T-violating
term to be only sin'{)- I/25 smaller than the
T- conserving one.

(4) The T-conserving b,S = 0 WI amplitudes
satisfy an approximate AI = 0 rule. Explicitly,

iAIi=1
i AIi=0

For the AS = 0 T-nonconserving amplitudes,
however,

iI! 11
iAIi=0

Consequently, in AS = 0, i AI i
= 1 transitions,

T violation and conservation are comparable.
(5) Finally, the vector coupling constant for

strangeness-conserving P decays is not G, but
Gcos8=0. 98G. (Remember that our 8 is small-
er than Cabibbo's angle by a factor of -~2. )
This is to be compared with the experimental
value of (0.978+ 0.0015)G."
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There have been several interesting attemptsi ~

made recently to combine within one relativistic
framework the internal symmetries of the strong
interactions with their spin independence. The
purpose of this Letter is to present for rapid
evaluation and assimilation a somewhat differ-
ent treatment of the spin aspects of the prob-
lem. A brief survey of the difficulties involved

in the usual approach to the problem is given
in order to clarify the subsequent derivation
of the new technique, but detailed applications
to the problem of combining spin and internal
symmetries will be reserved for presentation
at greater length in some more suitable pub-
lication.

In most usual treatments the infinitesimal
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