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no indication of asymmetry in the v - p.
+ +

decay angle for &+ 's in the energy range 0-12
MeV originating in 7.+ decay. Furthermore,
the data show no evidence for an anomalous-
ly large branching ratio for r -e decay+ +

for pions originating in T+ decay. Hence the
experiment provides no evidence for the ex-

istence of a new particle with nonzero spin,
of approximately the pion mass.
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The one-meson-exchange (OME) model modi-
fied by the inclusion of absorptive corrections
has met with impressive success, at least for
scalar meson exchanges. ' ' The formula used
by Sopkovich, 4 Durand and Chiu, ' and Gottfried
and Jackson' is to expand the OME scattering
amplitude B(W) in partial waves B~(W) and to
make the replacement

B (w) —[s„(w)] B (w)[s„(w)]

where W is the total energy in the c.m. system,
is the partial-wave S-matrix in the inci-

dent channel (1), and S»~ is the partial-wave
S matrix in the final channel (2). This formu-
la has been derived under the following assump-
tions'. (i) the applicability of a complex poten-
tial to high-energy elementary-particle reac-
tions; (ii) the neglect of "indirect" reactions
from channel 1 to 2 via an intermediate state
of channel n, n & 2; (iii) the neglect of the ef-
fect of the reaction 1- 2 on the 11 and 22 am-
plitudes; (iv) the validity of the high-energy
(eikonal) approximation; and either (v) that
the interactions in channel 1 and 2 are the same,
S„=s», or (v') that the range of the interac-
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tion giving rise to J3 is small compared to the
range of the interactions in channel 1 and 2.
Whether one questions assumption (i) is a mat-
ter of taste, but assumption (v) is quite ques-
tionable. In fact, (v') is not satisfied in any
of the reactions studied, and (v) seems arbi-
trary.

We present here a derivation of Eq. (1) with-
in the framework of S-matrix theory. Our rea-
sons for presenting this derivation are twofold:
Firstly, the dubious assumption (v) or (v') is
not necessary; and secondly, more accurate
formulas are found which should permit one
to evaluate some corrections to Eq. (1).~~~

Let the reaction amplitude that we wish to
calculate be designated M», which we analyze
into partial waves M», suppressing for sim-
plicity the labels referring to helicity and iso-
spin. The unitary condition for M» can be
written in the form

J J*
ImMq2 =Mq~ pqM~2 8(W-W~)

J+ J
+M~2 pmM22 8(W-W~)

J+
+ QM pM e(w-w),

n&2
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where the p~ are phase-space factors, 8', is
the threshold for the ith channel, and where
the abbreviation

where

q. = exp(-25 ),
(i)

2 I

n&2

J* J
+M» p, M» 8(W-K). (3)

%e thereby neglect all "indirect" coupling be-
tween channels 1 and 2. To relax this assump-
tion one necessarily goes beyond the ONE mod-
el. The exact unitarity condition is retained
for M,~~ and M»~, assumption (iii) is unneces-
sary in our treatment.

In the presence of inelastic scattering the
general form of the diagonal elements of M is
the following:

includes integrations over the phase space of
many-particle states. Now we introduce assump-
tion (ii) by neglecting the last term in Eq. (2);
i.e., taking'0

J J* J1~12 ™1lplM12 (W—Wl)

and where 5&' ' and 5f(' are the real and imag-
inary parts of the phase shift. Substituting
Eq. (4) into Eq. (3) one finds (for W& W,)

q exp(-2i5 "')M = q exp(2i5 "')M12*. (6)
R

This implies that q, = g„and that

= iM lexp[i(V "'+C "')j.

Thus the approximate unitarity equation (3)
is a condition on the phase of M», analogous
to the well-known phase relation between low-

energy photoproduction and pion-nucleon scat-
tering.

Assuming the phase shifts to be given, we
can construct a solution for M» in terms of
the functions

W-W. &„(W )
. (W)=-exp — dW (, )(, )

. (
Z Z

M, . = [r[.exp(2i5 )-1]/2ip, ,
(i)

El Z R Z' (4)
The quantity D,M,j7, is real on the real axis
for %'& 8'„and hence is analytic in that region.
Therefore, we can write

J 1 1,D, (W')D, (W') disc[M» (W')]
D~(W)D2(W) 2wi L W'-W

(1O)

and

1 fdiss[B (ss'),]
2mi L W'- W

If we define1,D, (W')D, (W') disc[B (W')]
2wi L W'-W

then we can write Eq. (9) in the OME approxi-
mation as

M (W) =[1/D (W)]B (W)[1/D (W)]. (13)

This form of solution is well known in low-en-

where the contour L extends over the unphys-
ical singularities of M», and where disc[M» ]
is (in the OME model) just the discontinuity
of the OME term,

disc[M„(W) j =disc[B (W)],
J . J

ergy problems (that is, at energies below in-
elastic thresholds) such as photoproduction and
N+N-v +m, where a unitarity condition of the
form of Eq. (3) is exact.

Equation (13) is similar in form to Eq. (1);
the remaining questions are the relationship
of B to B and the relationship of Di t ii.
The latter problem can be dealt with by consid-
ering the analytic properties of the phase shift,
5( )(W) = in(Sii )/2i. The phase shift will be
singular wherever the scattering amplitude is
singular, with additional branch points at the
zeros of S~~ . These zeros are associated with
resonances or other poles of S;; in unphysical
sheets. When such zeros are present, one can
factor them out explicitly and define an effec-
tive phase shift t}(W) in terms of the resulting
zero-free amplitude. For example, if there
is a pole in the second sheet, one can write
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S J as"11

[(w-w, )'"+y][(w-w, )'"-y*]- &( )11
[(w w )

1/ 2
y ][(w w )1 / 2 +y +] 1I (i4)

in which case the effective phase shift would be 6, = ln(S» )/2i. Assuming that such zeros are absent,
or that we have factored them out and are working with the effective phase shift 5, we can then write
a dispersion relation for the phase shift,

(15)l,disc[6"'(W')] i,disc[6"'(W')]
2@i L W' —W 2//i W~ W' —W

where the contour L extends over the unphysical singularities of M» (W). Since i5 is a real analytic
function of W, it follows that on the real axis, disc[6J =2Re5. Using this condition, and making a
subtraction at threshold, we obtain

W-W disc[6"'(W )] W-W - & '"(W )

(w -w, )(w -w) m w, (w -w, )(w -w) (is)

At high energies it seems plausible to assume that the right-hand integral in Eq. (16) is the dominant
term, because of the usual argument about the dominance of nearby singularities. In more physical
terms, we are assuming that the scattering is driven primarily by the absorption, rather than by
the potential in channel 1. Making this assumption, we see from comparison of Eqs. (16) and (6) that

Treating i5' ' similarly, one finds

s„(w)=1/D, (w). (i7)

W-W /. disc[5"'(~ )] W-W 6 "'(W )

2m i L (W'- W2) (W'-W) // W~ (W'-W2) (W'-W) (is)

Note that the lower limit of the right-hand in-
tegral is TV1 whereas the integral in D, starts
at W, . At energies W'» W, we may neglect,
in addition to the left-hand singularities, the
piece of the right-hand cut between W, and W„
and thereby identify S» with 1/D, . Substitut-
ing Eq. (17) and the analogous equation for S»
into Eq. (13), one finds

8( ) ( 4)1/2 -8( J)1/2

This result is very close to the formula in
question, Eq. (1); there remains only the ques-
tion of the relation between BJ and I3J, defined
by Eq. (12). For the high partial waves, where
the forces are weak, Di(w) does not differ sig-
nificantly from one, and the approximate equal-
ity

(20)

follows from comparison of Eqs. (11) and (12).
For the low partial waves the situation is much
less clear. Again, if the phase shifts in chan-
nels 1 and 2 happen to be small in a given par-

tial wave, Eq. (20) will be true. A third pos-
sibility is that disc[8 (W)] is sufficiently sharp-
ly peaked on that portion of I. which is nearest
to the physical threshold that the integral in
Eq. (11) and (12) is dominated by that portion.
Since Di(W;) = 1, the integral in Eq. (12) will
then be little affected by the D s and Eq. (20)
will again follow. This is the case for one of
the amplitudes in the process N +N - m +m, for
example. " It is clear, however, that the argu-
ments in favor of Eq. (20) are not compelling;
we should not be surprised to find the applica-
tion of Eq. (1) successful for some reactions
and unsuccessful for others.

When the exchanged meson is a vector me-
son, it seems impossible to justify Eq. (20).
If the exchanged vector meson is treated as
an elementary particle, then disc[B (W)] be-
haves badly at infinity, and the integral in Eq. (11)
does not exist. Even if we assume that a the-
ory without subtractions does exist, there is
no reason to believe that Eq. (20) would hold.
This is consistent with the fact that the appli-
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cation of Eq. (1) to reactions involving vector-
meson exchange has not been very successful;
for the case of pion-nucleon charge exchange
(via p-meson exchange) treated by Barger and
Ebel, it fails completely. " Presumably, mat-
ters would be improved if the exchange meson
were treated as a Regge pole, but it is not clear
how to include absorption corrections in that
case.

In conclusion, we have seen that there exists
a set of fairly plausible assumptions which lead
to Eq. (1) in S-matrix theory, when the exchanged
meson has spin zero. The approximations lead-
ing to Eq. (1) are e, asier to justify for the high
partial waves than for the low ones, for which
the case is rather weak. We see no prospect,
however, of making any stronger case for the
validity of Eq. (1) within the framework of S-
matrix theory. The truncating of the unitarity
series, Eq. (3), is clearly an essential part
of the model. From this approximation Eq. (13)
follows. The two remaining approximations
are Eqs. (17) and (20). We can see no reason
to believe that there should be any cancellation
between the terms neglected in these approxi-
mations. It should be possible, however, to
relax one or both of these approximations in
reactions where the low-energy dynamics are
rather well understood (such as pion-nucleon-
nucleon scattering). In such a case one could
evaluate Eq. (19) or perhaps Eq. (13) directly.
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In a recent Letter, ' we discussed the prob-
lem of determining the total mass matrix of
the neutral kaons. If CP invariance is broken
by the weak interactions, then in addition to
the widths and the mass difference of the two
"mass eigenstates" I KS), I Kl,), there are two
further complex parameters r, p which measure
the strength of the violation of T, and of TCP.
These parameters determine the admixtures
in IKS), IK~) of the CP eigenstates IK,), IK,).
In our earlier Letter we pointed out the possi-
bility of measuring these admixtures by obser-
vation of the CP nonconservation in a coherent

beam of kaons in matter. The forward scatter-
ing in the medium induces CP admixtures of
known phase and with amplitudes proportional
to the density, which add coherently to the in-
trinsic CP admixtures. Hence, by measuring
the magnitude of any CP-nonconserving effect
versus the density of the medium, these two
admixtures can be made to interfere, and both
the phase and magnitude of the intrinsic admix-
ture can be determined.

The purpose of this Letter is to develop this
idea further, especially pointing out thepossi-
bility of providing a reference admixture which


