
VOLUME 14, NUMBER 16 PHYSICAL REVIE%' LETTERS 19 APRIL 1965

kas, P. L. Bastien, J. Kirz, and N. Roos, Rev. Nod.
Phys. 36, 977 (1964).

4Correspondingly, it should be noted that the strength
of the direct coupling of K' to systems such as (NA),
etc. , may be arbitrarily small (without altering the
mixing parameter X), provided ~dm~ is sufficiently
small. To have a rough estimate of the strength of
the K' coupling compared to the strong K-meson cou-
pling constant, assume that K is pseudoscalar and
has the same charge-conjugation properties as K.
Thus if we take the K and K' couplings of the form
(f¹y5AK+H.c.) and (f 'F7ip5AK'+ H.c.), respectively,
g [the strength of (KK') mixing] is expected to be
roughly ff'm, where m is of the order of baryon
mass. In that case the ratio of the amplitudes for
productions of K' via K pole and direct production of
K is given by ff'm2/mjff mff' -If we. equate this to
A, = (2.3 && 10 3) [Eq. (8)], we obtain f ' = 2mKQmm
x (1/20f ) = 5xx 10 ' (putting 6m =x NeV, and f = 1).
This is indeed so small that we may completely ignore
direct K' production unmediated by the K pole. See
references 16 and 17.

Compare with the strength of the (Kw) vertex as
given by, for instance, Y. S. Kim and S. Oneda, Phys.
Letters 8, 83 (1964).

~6It is possible that every usual particle of our world
has a primed partner almost exactly identical to it.
The primed particles have strong and electromagnetic
interactions among themselves exactly similar to
those between the unprimed ones. Thus it is possible
that the primed and unprimed partners are almost de-
generate in mass. However, the primed particles in-
teract only semiwea. kly, weakly, or superweakly with
the unprimed particles and presumably can have weak
interactions much weaker than those of ours.

For example, for case {Q) the AWK' interaction
should be of the form Ny~AB~K'+H. c., leading to a
factor proportional to the baryon mass difference in
the production matrix element which suppresses the

couplings. For case (iQ), the coupling could be of the
form B&Niy5&»B ~AK' + H.c. Because it involves high-
er derivatives, it may be an induced interaction rather
than a primary one. If we take a point of view that ob-
served particles are the bound states of some funda-
mental entities, then the coupling will be proportional
to the overlap integral of the wave functions of K', N,
and A. For instance, charge-conjugation property of
K' opposite to that of K may give rise to a large differ-
ence in their wave functions.

This, of course, can be regarded only as an acci-
dent in, our model, since, a priori, there is no direct
relationship between the K~' and K2 lifetimes, except
that they should be of the same order of magnitude.
It is remarkable, however, that if we use the rough
estimate of A, given by Kq. (8), the lifetime of K~'
comes out to be almost equal to that of K2 (within a
factor of 1.5).

~~The mixing parameter A, for K2 is expected to be the
same as that for K~, since the (K~—K2) mass differ-
ence is negligible or may at most be comparable to
the (K, IP ) mass difference.

By "short-lived" K2, we mean the usual K2 with life-
time =5.6 x 10 sec.

This is, of course, still subject to the time-honored
assumption of an exponential decay 1.aw.

This is due to the (K+, K'+) a,nd {K,K' ) mixing.
K'+ and K' are the isotopic partners of K and K' .

3The intensity of the regenerated K~ per incident K2
of about 500 MeV/c for absorber of 3 cm of iron is
nearly 3x 10 4 (this can be made smaller by decreas-
ing the thickness of the absorber), while the intensity
of K~' relative to that of K2 is A, , and the rate of K~'

2m compared to that of K~ 27t is also A.2.
24We thank Professor G. A. Snow for drawing our at-

tention to such an experiment.
Since in this case the K2 2w amplitude will inter-

fere with the regenerated K& 27I amplitude.
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It has been emphasized by Gell-Mann' ' that
the algebra generated by current components
may serve as a useful tool in understanding
the structure of the system of hadrons. We
assert that the U(6) S U(6) algebra of current
components is useful independently of the ques-
tion as to whether the dynamics of strong in-
teractions is (approximately) invariant under
the group U(6) S U(6) or SU(6), in understand-
ing the hadron parameters of electromagnetic
and leptonic weak interactions. s The purpose

of this note is to support this assertion through
some illustrative examples and provide a ra-
tional explanation of the so-called SU(6) sym-
metry, ' which has been much discussed lately.

While the predictions of SU(6) in the regime
of low-energy phenomena are startling, ' the
attempts' to reconcile the essentially nonrela-
tivistic SU(6) and relativity have met with grave
difficulties: The prescription of reference 6
for constructing S-matrix elements does lead
to covariant S-matrix elements which possess
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SU(6) symmetry in the static limit, but is in

violent disagreement with one of the basic no-
tions of quantum theory. 7 A theory invariant
under a group which contains SU(3) and Poin-
card group in any but the most trivial way will
face catastrophic consequences. '&' The idea
of intrinsically broken U(6) invariancem may
fare better in this respect, but a convincing
demonstration that a theory of this variety can
reproduce the nonrelativistic SU(6) results
has been frustrated by the lack of a reliable
computational scheme. We suggest that many
(perhaps all") of the successes of the nonrela-
tivistic SU(6) can be explained in terms of the
algebra of currents and the highly convergent
nature (in the dispersion-theory sense) of the
relevant form factors; as for the dynamics

of strong interactions, we assume only the
unitary symmetry. We shall not assume that
strong interactions are SU(6) invariant.

We shall assume that the integrals of com-
ponents of vector and axial-vector currents

V (t) = iJ-d xV (x, t),
(x) . 3 (x)

A (t) = ifd -xa (x, t), p=0, 1, 2, 3, (1)
(X) . 3 (x)

generate the algebra' U(6) Cgw U(6) at equal times.
Here V&(~) and A&(~) transform like the state
(8, A.) for A = 1, ~ ~ ~ , 8, and (I, 0) for A = 0, with

the phase convention of deSwart. " The commu-
tation relation between two A (~), i = 1, ~ ~, 3
is

)A(~)A(u)) . 4 8 8 II (0) . 5&'" 8 8 Ssl (v) (8 8 8& (v)
j ijkW3 A. p Oj k ijk3i X p v& k ij (z p v& 0

(2)

We take the matrix element of Eq. (2) between the 2 baryon octet states In) and Jp) of zero momen-
ta." We insert the complete set of states between the two operators on the left of Eq. (2), to obtain

P (o. IA. iC )(C M. fP) —
ir jC, y

1/2 8=is —
[ [&A[A

' IP)-6. .~3 ')&ntV '
tP)+ ~ ~ ~

ijk 3i & p v j k ij & p v& 0 (3)

where C stands for the SU(3) dimensionality
and other kinematical variables, y = (I, Iz, F).
The omitted term on the right of (3) refers to
the uninteresting baryonic charge axial-vec-
tor current. The momentum of the state (C&)
is zero, and the spin-parity of this state is
~+ or $+. The summation includes the integra-
tion over masses. We assume that this inte-
gral is highly convergent, and further, that
it is a good approximation to replace the in-
tegral by the sum over a few low-lying excita-
tions (particles and resonances). '~ In this ap-
proximation, Eq. (3) may be viewed as a self-
consistency equation for the Gamow- Teller
matrix element for the nucleon and various
transition moments. The over-all scale of
these constants is determined by

&& ~ V,
"

[ p& = ~3
P v a

which follows from the fact that Vo(v) are the
generators of SU(3).

We look for a solution of Eq. (3) assuming
that only the ~+ octet contributes in the sum

(4)

(o. tA„ lP) =u(0)o u(0)) G,
p v n

(10 iA iP) =u (0)u(0) 6*, (5)

where u&(0) is the Rarita-Schwinger wave func-
tion for a spin-~ particle at rest. In this case,
we find the unique solution

G = —,G = —, G =2,

-G = — G+ — G

D (9)'" C 3

E5j ' G 2
'

over intermediate states. We find that there
is none. Next, we include the ~~+ decuplet states
in iC&) and write
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sit. ,'f=d x~. . xw (x);(Z), 3 (X)
i ijkjk

() ()]
2

=(a((f. . {) { )f0xx [x 0 (x))

p ~ ij 0

+~fd x(x 6. .-3x.x )V (x)]+ ~ ~ ~ lp)
3 2 (v)

ij ij 0
(7)

The omitted term comes from Ak' ', which
is of no interest to us. The commutation re-
lation (7) can be deduced in much the same
way as is Eq. (2)."

We define

We have reproduced the results of SU(6)."
The reason for this is clearly not because

the ~+ octet and ~3+ decuplet belong to a super-
multiplet of the group SU(6) which is an invar-
iance of the Hamiltonian; we did not assume,
nor did we make use of, this. It is because
the assumption that the &+ octet and ~+ decu-
plet saturate the sum over intermediate states
in (3) amounts to saying that these states form
bases of an irreducible representation of the
algebra U(6) generated by V, (v) and Ay(v) .

As a further illustration, we consider the
commutation relation between the magnetic-
moment operators

{f)t*(3it."'+3 '"sit '" Ip) = (2/v 3 ) p u (0)u(0) (10)
2 2 p i

and

V
'= l(r '),

p 'p'
1 dG

G dq

10 1(G)1
9G P 8m (G Imp'{, ) , I

—~
I , (12)

where {r~')"' and (r„')'" are the rms charge
radii of the proton and neutron. The electric
quadrupole moment operator

q. . = d x(,'6. .x -x.x.)~(v) 3, 2 (v)
ij

=
ij i j 0

has no matrix element between the ~+ baryon
states In) and I P).

The structural similarity of Eqs. (3) and (7)
allows us to read off the values of the magnetic
moments, A ~, in terms of the proton charge
radius. We see that'

(r ')=o,
n

2M /('{r '))'"= G =A /(-(r ))
P & 5

' P

2M*/(2(r ')}'"= G''5
p

In terms of more familiar quantities, w'e have

/0
P n

{a[mt. )P) =u(0)o.u(0)) I
~ IM,

and

00 I««.
' )0)=0(0).(0)('8 8 10

y i i p A. y

The over-all scale of Eq. (7) is set by

{n ~ fd xx v, (x) (p)
3 2 (v)

= —V(5( *)( «)

,~3(( .) x( 2))
8 8 8a'I

P n P v n)'

(~i fd xx.Ix.a, (x)][p)
3 (v)

2 j j
=«(0)a «(0)) ( ()A .

(8)

where m and p, are masses of the proton and
muon, GA(q') is the axial-vector form factor,
and Gp is the induced pseudoscalar form fac-
tor in p capture. The relations (10) are the
well-known SU(6) results. " Equation (11) has
been derived also by Dashen and Gell-Mann";
it agrees with experiment to within 20$(). Equa-
tion (12) predicts the slope of the axial-vector
form factor: With Gp =8GA, we obtain -GA
&dGA/dq'&0, which contradicts our a priori
notion. This is due to the rather large Gp/GA,
which comes in with a negative sign. It may
be that the rather large value for the nuclear
G~ is a reflection of a serious breakdown of
the octet symmetry; presumably this is due
to the small pion mass. '0

The lessons we extract from this exercise
are the following:

(A) The success of the nonrelativistic SU(6)
is not necessarily predicated upon the existence
of a group that contains SU(6) as a symmetry
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of the strong-interaction dynamics. It is suf-
ficient that some low-lying SU(3) multiplets
form bases of an irreducible representation
of the current algebra. Coleman' attributes
to Gell-Mann the remark that "a group might
be useful for classifying particles even if it
has no connection. . .with the approximate sym-
metries of the world. " %e hope to have shown
the usefulness of a group which may not be a
symmetry of the world.

(B) We may attribute the success of SU(6)
to the correctness of the assumptions that
(a) the current integrals and the moment opera-
tors have the proper commutators as Eqs. (2)
and (3); (b) the current integrals and the mo-
ment operators turn the &+ octet into the ~3+

decuplet and into itself. The algebra of cur-
rents is deduced from a rather specific model,
under a stringent dynamics-dependent hypoth-
esis." Nonetheless, the successful predictions
such as (10) and (11) give some support for
the postulated algebra.

I am indebted to Dr. R. F. Dashen for very
enlightening discussions. The discussions I
had with Professor S. Coleman and Dr. Dashen
at the Second Coral Gables Conference were
most valuable in stimulating the present work,
for which I wish to express my gratitude also
to Professor B. Kurqonoglu. I wish to thank
members of the community in Princeton, es-
pecially Professor J.R. Oppenheimer, for the
stimulus and criticism they provided. I wish
to thank Professor Oppenheimer for the hos-
pitality at The Institute for Advanced Study.

~Alfred P. Sloan Foundation Fellow on leave from the
Department of Physics, the University of Pennsylvania,
Philadelphia, Pennsylvania.

M. Gell-Mann, Phys. Rev. 125, 1067 (1962); Phys-
ics 1, 63 (1964).

R. P. Feynman, M. Gell-Mann, and G. Zweig, Phys.
Rev. Letters 13, 678 {1964).

In reference 2, the authors assume that "the total
A spin is a good symmetry" of the strong interactions.

F. Gursey and L. Radicati, Phys. Rev. Letters 13,
299 (1964); B. Sakita, Phys. Rev. 136, B1756 {1964}.

See reference 2, footnote 15.
A. Salam, R. Delbourgo, and J. Strathdee, Proc.

Roy. Soc. (London) A284, 146 (1965); M. A. B. Beg
and A. Pais, Phys. Rev. Letters 14, 267 (1965};

B. Sakita and K. Wali, Phys. Rev. Letters 14, 404
(1965).

VM. A. 8, Beg and A. Pais, Phys. Rev. Letters 14,
509 (1965); R. Blankenbecler, M. Goldberger, K. John-
son, and S. Treiman, Phys. Rev. Letters 14, 518
{1965);J. Cornwall, P. Freund, and K. T. Mahanthap-

pa, Phys. Rev. Letters 14, 515 (1965).
B. Sakita and L. Michet. , to be published.

'S. Coleman, to be published.
~ K. Bardakci, J. Cornwall, P. Freund, and B. Lee,

Phys. Rev. Letters 13, 698 (1964); 14, 48, 264 (1965).
In order to discuss mass splittings, etc. , in our

scheme, we need consider the commutators of the
energy-momentum tensors with the current compo-
nents. In this way we can generate an infinite algebra.
See also M. Gell-Mann, Phys. Rev. Letters 14, 77
(1965).

J. de Swart, Rev. Mod. Phys. 35, 916 {1963). We
shall use his notation for Clebsch-Gordan coefficients,
etc.

3To avoid ambiguities, we must deal with wave pack-
ets centered about zero moments for the states (o)
and )P) in the manner of F. Ernst, R. Sachs, and K. C.
%ali, Phys. Rev. 119, 1105 (1960). %'e shalt. under-
stand always that such state vectors are used in our
expressions. Details of calculation will be discussed
elsewhere.

Note that (o.~A&( )C ) refers to the form factor at
q =-{m~-m), where m~ is the mass of the state C.
The assumption that the form factors 0 as )q )

rapidly is consistent with this assumption.
F. Gursey, A. Pais, and L. Radicati, Phys. Rev.

Letters 13, 299 (1964).
~6We assume that the equal-time commutation re-

lation of the currents does not contain any terms more
singular than the delta function. This is a severe re-
striction on dynamics.

The uniqueness of this solution can be verified by
an elementary calculation.

~ M. A. B. Beg, B. Lee, and A. Pais, Phys. Rev. Let-
ters 13, 514 (1964).

~~R. F. Dashen and M. Gell-Mann, to be published.
At the time of writing, I have not had the benefit of
seeing this paper; the fact that they derived an equiva-
lent relation was known to me at an earlier date
through Professor M. Goldberger.

In a dispersion treatment of Gp{q ) [see M. I.. Gold-
berger and S. B. Treiman, Phys. Rev. 111, 346 (1958}],
Gp(0) = const/m~ . In an SU(3)-symmetric treatment,
we expect to obtain a formula Gp(0) = const/m, where
m is the mean-squared mass of the pseudoscalar oc-
tet. We further expect that the numerator in this ex-
pression is insensitive to the SU(3) breaking. If this
view is correct, we must multiply the last term on the
right of Eq. (12) by {m~ /m ) = (7.3) . We then obtain
-GA dGA/dq ~ 2 0= o. &8 (fermi)z.

q =0


