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Up to now magnetic effects in even-even nu-

clei have not been satisfactorily explained.
Nielsson and Prior' calculated the well-known
lowering of the rotational gR factors from the
value Z /A assuming different pairing forces
Gp and G~ for protons and neutrons, respec-
tively. However, there has been no explana-
tion of the magnetic dipole transitions from
the second 2+ to the first 2+ state generally ob-
served in even-even nuclei. It is the aim of
this note to show the intimate connection between
both observations and, in addition, to develop
a plausible picture for understanding these ef-
fects.

The counterplay of the pairing and the quad-
rupole force determines the shape of the nu-
cleus, ~' i.e. , a spherical or a deformed shape.
The pairing force makes the nuclei prefer spher-
ical shapes while the quadrupole force leads to
deformations. One therefore expects that for
a definite nucleus, a larger pairing force will
decrease the deformation. Consequently, since
G~ is 30%% larger than G„, one expects less de-
formation for protons than for neutrons. It
will be shown now that this picture has the con-
sequence that the g factor becomes a g tensor,
i.e. , the magnetic moment p, , and the total an-
gular momentum, I, point in different direc-
tions. '

In the intrinsic coordinate system the g fac-
tor for a rotation of the system around the 0.

axis (v= 1, 2, 3) is given by

by the radius R=R,[1+a+»+a,(Y»+Y, , )]
and B is the mass parameter. We assume that
the proton ellipsoid and the neutron ellipsoid
are strongly coupled, i.e., their principal axes
coincide. They will only be a little different
in their equilibrium shape because of their dif-
ferent deformation. Therefore the angular ve-
locity ( is the same for protons and for the
total system (protons + neutrons) —see Fig. 1.
The deformations are denoted for protons by

ao(P) =Bo(P) +ao',

a,(p) = 0+a, ';

and for the total system by

~o=Bo+ o &

a, = 0+a2'.

(3a)

(3b)

(3c)

(3d)

Only the axial symmetric equilibrium deforma-
tions are assumed to be different, i.e. Bo(p)
+ Bp The vibrational coordinates & a~' are
taken to be the same for protons and for the
total system. '

Inserting (2) into (1) we obtain for the g fac-
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~

(a ) =B[3a '+2a 'a 2(6)"'a a ],

where the a„are the shape parameters defined

where Ipz and Iz are the o' components of the
angular momentum of the protons and of the
total angular momentum of the system, respec-
tively. co is the angular velocity, and Np and
g are the moments of inertia of the protons
alone and of the total system (protons+ neutrons).
They are given, according to the rotation-vi-
bration modelv&' of the nucleus, by the Bohr
formulas'

FIG. 1. Schematic picture of the mass (protons+ neu-
trons) and proton ellipsoid. Solid line: shape of the
mass distribution of the deformed nucleus. Dashed
line: shape of the proton distribution of the deformed
nucleus. Both ellipsoids are strongly coupled and ro-
tate with the same angular velocity cu. The different
deformations for protons and neutrons are related to
their different pairing forces. The principal axes are
numbered by 1, 2, and 3.
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tors around the 1 and 2 axis

B [3a '(P)+2a '~2(6)"'a a (P)]
= p

B[3a '+2a '~ 2(6)"'a~ ]

sic components p. „by
v =Z D '(8.)u;

O' P O'V Z V

p, = -2 '(g+I++ g I ),
Since the mass parameters Bp, and B will be
proportional to the proton and nucleon densi-
ties, respectively, we have Bp/B =Z/A. Insert-
ing (3) into (4) and expanding in the small quan-
tities, we obtain for the dominant terms

where

q, = 2-'"(g I++gp ),

~o=go~oi

g =- -,'(g, +g,) = (ZIA)(l-2f),

g =- k(g -g,) = (Z/A) (l-2f) f (6)"'fajBO' (6)

Note that for B,(p) -Bo, i.e. for equal deforma-
tion for protons and neutrons, g =0 and g+
=Z/A. Therefore the lowering of the g& fac-
tor from Z/A indicates a smaller proton defor-
mation. In addition, simultaneously with the
lowering of g+ occurs a nonvanishing value for
g which is, due to the a, dependence, respon-
sible for magnetic transitions between the y
and ground-state rotational bands. In addition
it indicates that the g factor depends on the
axis of rotation and, consequently, the usual

g factor has now become a tensor. The mag-
netic moment is given in terms of the intrin-

I~:I~ + 'l'I2 ~

We use for our calculations the wave functions
of the rotation-vibration model'~' lIEn~, ),
which have been proven to give a good descrip-
tion of the low-energy spectra. " The gR fac-
tor for the first rotational 2+ state and the M1-
F2 mixing parameter for the 2+'- 2+ transition
are given by

g = ((I«,n, i i,!I«,n, )/I)

T(E2) ' ' &3 E B(E2II I)
&(Ml) 10 (Kc) B(Ml]p-I)

Here the + or —sign has to be chosen, depend-
ing on the sign of the reduced matrix elements.
F. is the transition energy. The quadrupole
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FIG. 2. Experimental gg factors, [see K. Bodenstedt, Fortschr. Physik 10, 321 {1962); and P. Kienle et al. , to
be published] compared with the theoretical predictions using Formulas {9) and {10)of the text.
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FIG. 3. The values for log(6/E)2 for various nuclei. The dotted curve gives theoretical predictions using For-
mulas (S) and (10) of the text. The full line gives theoretical values for log(6/E) using a value for the lowering

factor f [see Eq. (6) of the text] which has been deduced from the experimental g~ factors shown in Fig. 2. It is
noted that some structure for the magnetic dipole transitions seems to be quantitatively related to the structure of

the gg factors, especially in the Os region. It should be noted, however, that the experimental errors of the gg
factors (see Fig. 2) scatter the related predictions for (6/E)2 appreciably.

operator is calculated, as usual, for a homo-
geneous charge distribution. The results are
the following formulas:

(gR)2+=g, = (Z/&)(1-2f),

Ig
t 1200)—

I I'000)

=+ 8.VOx10-6 '
f'(1-2f)'

(I 21 l022}2
X '1I I 112)2 I'(I'+ 1)

(9)

Il (P) (G ) ~2 |'20)

~0(.) «) &30i

II@.(n) +Za.(P)&0= (10)

where Bo is the nuclear deformation parameter.
No rotation-vibration interaction band mixing
has been taken into account, since their effects
are negligible. We note that as f—0, only quad-
rupole transitions occur (5 - ~).

Figure 2 shows the lowering of the gg factors
if the relation

is used for determining the ratio of proton and

neutron deformation. ' Such a formula follows
from the quasispin model. ' In Fig. 3 the dot-
ted line gives (5/E)' in a logarithmic scale un-

der the same assumptions. A formula like (10)
is crude, however, and therefore it seems more
realistic to use for the parameter f those val-
ues which are deduced from the experimental

gR factor [using Eq. (5}jand then predicting
the M1-E2 mixing parameter. This is shown

by the full line of Fig. 3. Further, the sign of
5 is, according to (9), always positive, in agree-
ment with experiments. ' The results indicate
that the main effect of the lowering of the g~
factor and the Ml transitions can be understood
in this simple, lucid way, and that even some
structure of the former can be related to the
structure of the latter. It seems desirable,
however, to search for other kinds of experi-
ments in order to prove further the idea of dif-
ferent proton and neutron deformations.

I would like to acknowledge stimulating dis-
cussions with Professor H. Marschall and Pro-
fessor T. Schmidt at the University of Freiburg/
Braunschweig, and with Professor E. Boden-
stedt at the University of Bonn. Thanks are
due also to Dr. G. Strube, Bonn, for some ex-
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perimenta, l data.
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