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Recently a large number of papers have ap-
peared in which the possibilities of combining
Lorentz invariance and internal symmetry have

been discussed. ' One possibility which presents
itself is that the (inhomogeneous) Lorentz group

is a subgroup of a larger symmetry group.
In this connection the question arises as to wheth-

er it might be possible to explain within the con-
text of the larger symmetry group the mass
differences which are observed to occur with-
in the multiplets of the ordinary internal sym-
metry groups. In a previous paper, in which
attention was confined to Lie algebras rather
than Lie (or other) groups, the possibilities
for imbedding the Lie algebra L of 4 in a larger
Lie algebra G were investigated, and it was
shown that if G were of finite order, the ways
in which this could be done could be classified
into four classes. It was then shown that with-
in the context of the first two classes of Lie
algebras the mass differences could not be ex-
plained.

In the present paper we wish to extend the
latter result by establishing a theorem which
shows that, if the mass operator is self-adjoint,
and the masses of the particles are regarded
as discrete points in the mass spectrum, then
the mass differences cannot be explained with-
in the context of any Lie algebra of finite or-
der. The theorem is as follows:

Theorem. —Let L denote the Lie algebra of
the inhomogeneous Lorentz group 2, G denote
the Lie algebra of any Lie group g of finite or-
der r, of which L is a subgroup, and let H de-
note Hilbert space on which any representation
of G operates. Let I'& denote the infinitesimal
generators of the space-time translations in

If the mass operator

and every finite power thereof, are self-adjoint
on H, and if there exists a discrete point m
in the spectrum of I on H, then the eigenspace
Hm belonging' to the point m' is closed, and
is invariant with respect to the operators rep-
resenting the Lie algebra G.

Let Un denote any commutator of the form

[P,[P2[P3. [P,E] ]]1, (4)

where each Pz, x= 1, ~ ~, n, is equal to one of
the four base elements I'z. Then there exists
a finite integer N, such that

U =0 for n~¹
n

Proof. —Let D(E) denote the matrices of the
adjoint representation of the Lie algebra of G.
That is to say, if E~, a=1, , r, is a basis
in the Lie algebra of G,

[E,E ]=D (E)E

Then we can write U„ in the form

U =D(P )D(P ) ~ ~ D(P )E
n 1 2 n

(6)

Hence to establish the Lemma, it is sufficient
to prove that there exists a finite integer N,
such that

D(P )D(P ). ~ ~ D(P ) =0 for n~ N.
1 2 n

To prove this we note that from (2),

D(P )=[D(P ),D(~ )],
V P, v

(8)

for any ve g (v not summed), whence from (3),

D"(P )=[D(P ),D(M )D" (P )],
V P. v

(10)

for any vc p (v, p not summed) and for any in-

Proof. —That H~ is closed follows from the
fact that it is the eigenspace of the seU-adjoint,
and therefore closed, operator. ' To prove that
it is invariant with respect to the operators rep-
resenting the Lie algebra G, it is convenient
to establish first the following two Lemmas.

Lemma I.—Let E denote any element ir the
Lie algebra of G, and in particular let M» and

P~ denote the base elements in the Lie algebra
of L, so that

[M,P ]=@ P -g P,
P, v (7 v(7 P. $,0' V

[P,P ]=0.
V
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teger n. But the adjoint representation of a
Lie algebra of finite order is finite dimension-
al, and in a finite-dimensional space, the trace
of any commutator is zero. Hence,

TrD (P ) =0,

for any integer n. Hence the four matrices
D(Po) are nilpotent. Hence for each of them

there exists a finite integer n~ such that (A h, A2 Ia)=&a, A2 a). (20)

A trivial consequence of this equation is that
A2 Ih) exists. But if A2 Ih) exists, A2 Ih)
exists and lies in the domain of 22~ . Further,
if A2 Ih) exists, Ih) lies in the domain of
A2 . Thus (19) implies that Ih) and A2 Ih)
lie in the domain of A2m and that Ih) lies in

the domain of A™.Hence, since A2 is self-
adj oint, ~

n
D (P )=Oforn~n .

0' 0'
(12)

But from (19), the right-hand side of this equa-
tion is zero. Hence,

Since the four D(Po) commute, we obtain the
required result (8) by choosing N=4& [maxi-
mum (no}].

Corollary. —If ~~ denotes the commutator

V =[P2[P2[P2 [P2, Z] .]]],

&A2 h A2 a)=O.

Since the metric is positive definite, we then
have

Ia)=o. (22)

which contains n I 's, then

V =Ofor n~X
n

(14)
Comparing this equation with (19), we see that
we can deduce in an exactly similar way

Proof. —From the relation

[p, v ]=g '(p [p, v ]+[p,v ]p'l and similarly,

la&, (28)

=g '(2P [P, V ]-[P [P, V ]])

=g (2p v -v ),r+I r+2 ' (15)

if follows easily by induction in r that

t'= 2n
v = Q c v,

n rr'
r=n

where the Cr are polynomials in the P's. But,
from Lemma I, the right-hand side of this equa-
tion is zero for n~ N, Q.E.D.

Lemma II. —Let A be a linear operator on a
Hilbert space H, such that A and all finite pow-
ers of A are self-adjoint. If there exists a vec-
tor I h) in H such that

zla
m

Since, by definition of Hm,

(P'-m')Ih )=O,
m

(25)

(28)

we have

(P'-m') Z I h )

A2 lh)=A2 Ih)= ~ ~ ~ =A2lh)=Ala)=0 (24)

Q.E.D.
%e proceed now to the proof of the main theo-

rem. Let E be an infinitesimal generator of
the transformations representing G on H. Let
Ihm) be any vector in Hm on which Z is defined,
and consider the vector

A Ih)=0,

for some finite integer N, then

A lh) =0.

Proof. —Let m be any integer such that 2
~

¹ Then from (17),

(17)

(18)

=[P'[P[P "[P',z]" ]]]la ),

where the commutator on the right contains
N P"s. But, by the corollary to Lemma I,
this commutator is zero. Hence,

(P -m ) Zla )=O.2 2N

(27)

(28)

But since every finite power of I is self-ad-
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Hence, by definition,

Eia )ce
m m

(30)

Thus the space Hm is invariant with respect
to E.
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joint, m' is real, and every finite power of
(P'-m') is self-adjoint. Hence, from Lemma II,

(29)
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Every discrete point in the spectrum of a self-ad-
joint operator is an eigenvalue of the operator, i.e. ,

there corresponds to it a nontrivial eigenspace [N. J.
Akhiezer and I. M. Glazman, Theory of Linear Opera-
tors in Hilbert Space {Frederick Ungar Publishing
Company, New York, 1961), pp. 81 and 91].

Akhiezer and Glazman, reference 2, pp. 80-81.

ERRATUM

COVARIANCE, SU(6), AND UNITARITY. M. A. B.
Beg and A. Pais [Phys. Rev. Letters 14, 509
(1965)].

The discussion following Eq. (3) is geared to
the following Eqs. (1) and (2):

7'(I)=f(s, f@Z(p4& (pl) v~(p2)v (p3),

A 8
T(143) =g(s, f)s/(P4)(o~)/ & (pl)

C D
"O'P2" N'D

"' ' 3'
not to the coupling scheme reproduced in the
paper.

The closing sentence of the first paragraph
on page 511 should read: "In the present case
unitarity can be implemented if i is a pure sin-
glet, though not if it is pure 143."
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