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Recently a large number of papers have ap-
peared in which the possibilities of combining
Lorentz invariance and internal symmetry have
been discussed.’ One possibility which presents
itself is that the (inhomogeneous) Lorentz group
£ is a subgroup of a larger symmetry group.

In this connection the question arises as to wheth-
er it might be possible to explain within the con-
text of the larger symmetry group the mass
differences which are observed to occur with-

in the multiplets of the ordinary internal sym-
metry groups. In a previous paper, in which
attention was confined to Lie algebras rather
than Lie (or other) groups, the possibilities

for imbedding the Lie algebra L of £ in a larger
Lie algebra G were investigated, and it was
shown that if G were of finite order, the ways

in which this could be done could be classified
into four classes. It was then shown that with-
in the context of the first two classes of Lie
algebras the mass differences could not be ex-
plained.

In the present paper we wish to extend the
latter result by establishing a theorem which
shows that, if the mass operator is self-adjoint,
and the masses of the particles are regarded
as discrete points in the mass spectrum, then
the mass differences cannot be explained with-
in the context of any Lie algebra of finite or-
der. The theorem is as follows:

Theorem. —Let L denote the Lie algebra of
the inhomogeneous Lorentz group £, G denote
the Lie algebra of any Lie group G of finite or-
der 7, of which L is a subgroup, and let H de-
note Hilbert space on which any representation
of G operates. Let PIJ denote the infinitesimal
generators of the space-time translations in
L. If the mass operator

2 U
P :PuP , 1)

and every finite power thereof, are self-adjoint
on H, and if there exists a discrete point m?

in the spectrum of P? on H, then the eigenspace
H,;, belonging® to the point m? is closed, and

is invariant with respect to the operators rep-
resenting the Lie algebra G.

Proof. —That H,,, is closed follows from the
fact that it is the eigenspace of the self-adjoint,
and therefore closed, operator.® To prove that
it is invariant with respect to the operators rep-
resenting the Lie algebra G, it is convenient
to establish first the following two Lemmas.

Lemma I. —Let E denote any element in the
Lie algebra of G, and in particular let M, and
P denote the base elements in the Lie algebra
of L, so that

[M[.LV’PO']:gVO'P[J—g}LO’PV’ ()
[Pu,py]zo. (3)

Let U, denote any commutator of the form
[P, [P,[Py---[P ,E]---]l], (4)
where each P, v=1,--,n, is equal to one of

the four base elements Po. Then there exists
a finite integer N, such that

Un=0 for n=N. (5)

Proof. —Let D(E) denote the matrices of the
adjoint representation of the Lie algebra of G.

That is to say, if E,;, a=1,--+,7, is a basis
in the Lie algebra of G,
[E,Ea]:Dab(E)Eb. (6)

Then we can write Uy in the form
U =D D v D .
,=D(P)D(P,)---D(P )E (7
Hence to establish the Lemma, it is sufficient

to prove that there exists a finite integer N,
such that

D(Pl)D(P )e e -D(Pn) =0 for n=> N. (8)

2
To prove this we note that from (2),

D =
(P )=[D®), DM )], (9)
for any v+ i (v not summed), whence from (3),
n n-1
D =
(P )=[D@ ), D01 )DTP )], (10)
for any v+ u (v, L not summed) and for any in-
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teger n. But the adjoint representation of a
Lie algebra of finite order is finite dimension-
al, and in a finite-dimensional space, the trace
of any commutator is zero. Hence,

Tan(Pu)zo, (11)

for any integer n. Hence the four matrices
D(P,) are nilpotent. Hence for each of them
there exists a finite integer n; such that

Dn(P )=0 for n=n . (12)
o o

Since the four D(P,) commute, we obtain the
required result (8) by choosing N=4X [maxi-
mum (n)].

Corollary. —If V,, denotes the commutator

v, = [P?[p2[p2. .. [P?E]---]]], (13)

which contains n P*’s, then

Vn=0for n= N, (14)
Proof. —From the relation
(P, v 1=¢""{p [P U 1+1P U 1P}
-¢"fp [P_,U J-[P [P U T}

AC
=& {ZPAUT + I-Ur +2

1, (15)

if follows easily by induction in 7 that

r=2n
Vn- ,,{)n CyUr, (16)
where the C, are polynomials in the P’s. But,
from Lemma I, the right-hand side of this equa-
tion is zero for n= N, Q.E.D.

Lemma II. —Let A be a linear operator on a
Hilbert space H, such that A and all finite pow-
ers of A are self-adjoint. If there exists a vec-
tor |k) in H such that

ANiny- 0, (1)
for some finite integer N, then
Alr)=0. (18)

Proof. —Let m be any integer such that 2
2 N. Then from (17),

A2y =o0. (19)

576

A trivial consequence of this equation is that
A2M|p) exists. But if A2™|h) exists, A2"~1|p)
exists and lies in the domain of A2” =1 Further,
if A2"=1|p) exists, Ik) lies in the domain of
A2m=1  Thyus (19) implies that 1) and 427 =1|p)
lie in the domain of A2”~1 and that !4) lies in
the domain of A2™. Hence, since A2"~1 is self-
adjoint,?

A2 a2 Ny, a2, (20)
But from (19), the right-hand side of this equa-
tion is zero. Hence,
a2m Y, q2m-lyy o (1)

Since the metric is positive definite, we then
have

om-—1

A (h)=0. (22)

Comparing this equation with (19), we see that
we can deduce in an exactly similar way

A2"2 )y (23)

and similarly,

A2 3y - a2y A2y =AY =0, (24)

Q.E.D.

We proceed now to the proof of the main theo-
rem. Let E be an infinitesimal generator of
the transformations representing G on H. Let
|k, be any vector in H,, on which E is defined,
and consider the vector

Elhm>. (25)

Since, by definition of H,,,,
(Pz—mz)lhm>=0, (26)
we have
P NEI )
m
i Lintial L Lo¥ o) R 11 [N o3
where the commutator on the right contains
N P?’s, But, by the corollary to Lemma I,

this commutator is zero. Hence,

2 2N
(P"=m") E!hm>=o. (28)

But since every finite power of P? is self-ad-
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joint, m? is real, and every finite power of
(P?-m?) is self-adjoint. Hence, from Lemma II,

(P2P-m?E\h )=0. (29)
m

Hence, by definition,
Elh )CH . (30)
m m

Thus the space H,, is invariant with respect
to E.
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Bég and A. Pais [Phys. Rev. Letters 14, 509

(1965)].

The discussion following Eq. (3) is geared to
the following Eqgs. (1) and (2):

T(W)=A(s, 0 , 6, 0" G)) TG0 By, (1)

T(143)=g(s, 1)t , (5,)(0 ) " (B

A B, .

R

7,600, 6, @)

not to the coupling scheme reproduced in the

paper.

The closing sentence of the first paragraph
on page 511 should read: “In the present case
unitarity can be implemented if 7 is a pure sin-
glet, though not if it is pure 143.”
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