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It is well known that external radiation of fre-
quency w, incident upon a plasma is absorbed
by inverse bremsstrahlung of electrons in the
presence of ions.! However, when w, is close
to the plasma frequency, wp, the radiation en-
ergy is preferentially fed into electron plasma
oscillations at a rate proportional to Io/nckT,
where I, is the radiation intensity, » the den-
sity of electrons, c the speed of light, and 2T
the electron thermal energy. We wish to point
out in this Letter the possibility of electron

plasma oscillations becoming unstable and grow-
ing in amplitude when they gain energy at a
rate faster than they can dissipate it by their
dominant damping mechanism; that is, when
IO/nckT’;yL/wp, where y; is the plasma damp-
ing rate.

Monochromatic coherent external radiatioB
of form 5E,exp[i(KyT—wyt)] +c.c., where koE,
=0, will modulate the longitudinal polarization,
P (k,w), in the plasma at the sum and differ-
ence frequencies w+ wg!
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E; is the effective longitudinal field in the plasma (=-Pj), x =x° +XLi is the usual equilibrium
longitudinal susceptibility with a contribution from the electrons, x;¢, and a contributio& from the
ions, ¥ Li’ X LN L is a nonlinear longitudinal susceptibility connecting the polarization to E, and

EL(wt wq). A similar equation for —EL(w—o;O) follows from (1), which now couples to frequencies

w and w-2w,. Infact, a chain of coupled equations is generated. Assume in the following that w is
near the plasma resonance frequency, wy, = (wp®+3v%?)"/?, and w, slightly is above it. In the chain

of equations we can then neglect all fields E; propagating at frequencies other than w and w-w,
(strongly damped low-frequency ion-acoustic waves can still conceivably respond at the difference
frequency w-w,).? This leaves only two coupled homogeneous equations for EL(E, w) and EL(E, w-wq).®
The condition for a nontrivial solution is the vanishing of the following function, which is the nonlinear
longitudinal dielectric constant eLNL(E, w),
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where eL(E, w)=1+ xL(E, w) is the usual plas-

ma dielectric constant. If we consider real microscopic theory. A Vlasov-type equation

frequencies, w, only the real part eLNL (k, w)
must vanish (this determines the resonant fre-
quency), and the imaginary part will give the
effective damping.

Further quantitative discussion requires a
knowledge of the susceptibility, x; VL. This,
together with the structure of Eq. (1), may be
obtained from Poisson’s equation, iEEL(E, w)
=4re(n(k, w)), and an evaluation of the average
density response, (n(k,w)), using a suitable
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for the electron distribution function in an ex-
ternal field is an example. The random-phase
approximation gives only the usual Xy, but if
second-order terms in the effective field are
included, one may pick out the appropriate non-
linear susceptibility. In the language of Feyn-
man diagrams, Fig. 1 shows the coupling we
are considering. In a forthcoming paper, we
will present a Green’s-function derivation.

We find QLNL can be related quite generally
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FIG. 1. Feynman diagrams for nonlinear coupling
between plasma mode, ion mode, and external field.
Wavy lines represent the external transverse field,
light lines electrons, and braided lines longitudinal
fields.

in the collisionless approximation to the equi-
librium longitudinal susceptibility y L of a non-
relativistic two-component plasma. When one
mass, m,, is much lighter than the other, m;
(neglecting terms of order v/c),
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Otherwise there will be another contribution

involving xLl, with m; replacing m,. For the

high-temperature electron-ion plasma with w

near the plasma frequency, and w, slightly above

it, the dominant term of Eq. (3) when k/kp<<1

is simply
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Equation (2) may then be stated simply as
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where A2= i(wt,"/wo“) cos2d (IO/rLckT), Ip= Eg?c/
4n, and 6 is the angle between E, and k. With
RIE, A*sIy/4nckT. In what follows, A® will
always be «<1.

The condition ReeLNL(E, w)=0 gives a small
shift* in the resonant frequency: w=w;[1+0(A?%)].
Of greater interest is the damping rate,
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where yL/wp —ImeL(E wy ) is the damping in
the absence of the external field. For k<<kp,
Im(kp?/k?)e;~ 1k, wy-wq)=f() is a well-known
positive function® of positive u = (wg-wy )/vik,
where v; = (meg/m;)*? is the thermal velocity.
f(u) rises from zero at u =0, to a maximum of
0.6 at u =1.7, after which it exponentially ap-
proaches zero as u — +«. It has a half-width
of roughly Au=1. Hence, the negative damp-
ing term in Eq. (6) can be appreciable only when
wo—wL:(l.'?x 0.5)1)2.]8. )
Physically, this requirement is a frequency-
matching condition for the external radiation
to excite an electron plasma wave and a strong-
ly damped ion-acoustic wave [whose frequency
lies in the range indicated by the right-hand
side of (7)]. It is a stringent requirement on
the monochromaticity of the external field, the
density homogeneity of the plasma,® and the
wave number, k2, of the plasma mode. When
ko/kp<k/kp<<1, one may show from Eq. (7)
that the plasma mode receiving the maximum
negative damping, —0.6A%, has a wave number
given by

Po[2fw L7\?m V2 1.7/m \?
bl G5 =6 o
by L3\e) 5/ m) T3 \m,

wo/wp should be chosen small enough so that
k/kp<<1 and the plasma mode is weakly damped,
but large enough to allow the radiation to pene-
trate the plasma. Although the laws of reflec-
tion and transmission at a sharp boundary do
not strictly apply to diffuse plasma boundaries,
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FIG. 2. (Negative damping/sec)/Apr=Im(kD2/k2)
XGL"i(k,wL—wO) as a function of k/kp for ‘”O/“’p
=1.1, 1.05 in a fully ionized hydrogen plasma.

they are an indication of the ease of penetration
of radiation. The transmission coefficient,
given by 7 =4n(w,)/[n(w,) +1]* [where n(wg) = (1
-w 2/u)oz)“z] is 809 for wo/w =1.1, correspond-
ing to #/kp=3. Hence, it should be possible to
choose a frequency w, which both penetrates
the plasma and stimulates a weakly damped
plasma mode. Around the optimum k/kp giv-
en in Eq. (8) there will be a small range, Ak/
kp, of wave numbers which receive compar-
able negative damping. When the ion Doppler
width v;% is greater than y, this range is Ak/
kp=30m,/m;)'*. In Fig. 2 we plot

2/p2 -1 -
Im(kD/k )eL (k,wL wo)

as a function of k/kp, for u;o/wp =1.1 and wg/

wp =1.05. We conclude that when 0.6A227L/wp,
plasma oscillations with wave number in a small
range about the k/kp given by Eq. (8) will be-
gin to go unstable and grow. The damping may
be estimated using the collisional conductivity
value,! yL/wp = (6\/§n3’2)"‘(kD3/n) ln(kT/ﬁwp).
For k/kp less than ~0.2 this damping dominates
Landau damping. The growth criterion would
appear to be met easily with low-density plas-
mas and microwave radiation of kW/cm? inten-
sity. For example, if n =10 electrons/cm?,
and kT =1eV, yr/wp=~107% whereas A*=10"2
for 1-kW, 1-cm waves. In the presence of net
gain (yLNL/wp <0), plasma oscillations spon-
taneously present due to density fluctuations

will be amplified by a gain factor exp(+IyLNL 8.
With the plasma inside a microwave cavity di-
rect detection of these growing waves may be
possible.
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For very high-density plasmas, such as those
produced by a focused ruby laser,” the instabil-
ity might be induced by the laser radiation,
although density inhomogeneity and strong damp-
ing are obstacles.

In a forthcoming paper, one of us (M.V.G.)
will give a fuller derivation of these results
as well as the spectral properties of the den-
sity fluctuations, using quantum statistical
mechanics.
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