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It is well known that external radiation of fre-
quency ~, incident upon a plasma is absorbed
by inverse bremsstrahlung of electrons in the
presence of ions. ' However, when ~0 is close
to the plasma frequency, ~p, the radiation en-
ergy is preferentially fed into electron plasma
oscillations at a rate proportional to IgnckT,
where Io is the radiation intensity, n the den-
sity of electrons, c the speed of light, and kT
the electron thermal energy. We wish to point
out in this Letter the possibility of electron

plasma oscillations becoming unstable and grow-
ing in amplitude when they gain energy at a
rate faster than they can dissipate it by their
dominant damping mechanism, that is, when

IQ/nckT&yI/&uf, where yf is the plasma damp-

ing rate.
Monochromatic coherent external radiation

of form ~E, exp[i(k, r-&ug)]+c. c., where k,.EO
= 0, will modulate the longitudinal polarization,

PI (k, &u), in the plasma at the sum and differ-
ence frequencies co+ (,.

P (k, &u) = E(k, a) =y -(k, (u)E (k, u))+E y (k, (u;k-k, u)-a )E (k-k, ru-&u )

+EQ g (k, (uQ', k+kQ, (u+(uQ)E (k+k, (u+(a&Q).

EI is the effective longitudinal field in the plasma (=-PL), yI = yLe+yI' is the usual equilibrium
longitudinal susceptibility with a contribution from the electrons, pie, and a contribution from the
ions, y&~, y&&I- is a nonlinear longitudinal susceptibility connecting the polarization to E, and
EI ((Ll k ll Q), A similar equation for EI (&u -u: Q) fol-lows from (1), which now couples to frequencies

and (d-2~, . In fact, a chain of coupled equations is generated. Assume in the following that (d is
near the plasma resonance frequency, +I = (up'+3v'k')"', and ~0 slightly is above it. In the chain
of equations we can then neglect all fields FI propagating at frequencies other than co and ~-~,
(strongly damped low-frequency ion-acoustic waves can still conceivably respond at the difference
frequency & -~,).' This leaves only two coupled homogeneous equations for EI (k, &u) and EI (k, v-~Q). '
The condition for a nontrivial solution is the vanishing of the following function, which is the nonlinear
longitudinal dielectric constant eI +~(k, &u),

where e&(k, u, ) = 1+yL (k, &u) is the usual plas-
ma dielectric constant ~ If we consider real
frequencies, ~, only the real part eI (k, ~)
must vanish (this determines the resonant fre-
quency), and the imaginary part will give the
effective damping.

Further quantitative discussion requires a
knowledge of the susceptibility, yL . This,
together with the structure of Eq. (1), may be
obtained from Poisson's equation, ikEI. (k, v)
=4ve(n(k, v)), and an evaluation of the average
density response, (n(k, ~)), using a suitable

microscopic theory. A Vlasov-type equation
for the electron distribution function in an ex-
ternal field is an example. The random-phase
approximation gives only the usual X&, but if
second-order terms in the effective field are
included, one may pick out the appropriate non-
linear susceptibility. In the language of Feyn-
man diagrams, Fig. 1 shows the coupling we
are considering. In a forthcoming paper, we
will present a Green's-function derivation.
We find gL+~ can be related quite generally
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Equation (2) may then be stated simply as

NL- A
(k, (u) = e (k, (u)- (,/„,) ~ ), (5)

where A2= —'(ep4/u;0~) cos 8(fp/uckT), Ip—:Ep'c/
4m, and 6I is the angle between Eo and k. With
k li E„A'~IJ4nckT In w. hat follows, A' will
always be «1.

The condition Reef ~(k, e) =0 gives a small
shift' in the resonant frequency: &u =&sf [I+0(A')].
Of greater interest is the damping rate,

k gp, , ko- k

NL
'y

L NL-
=Ime (k, (u )

FIG. 1. Feynman diagrams for nonlinear coupling
be@veen plasma mode, ion mode, and external field.
Wavy lines represent the external transverse field,
light lines electrons, and braided lines longitudinal
fields. = (1.7+ 0.5)U.k.

0 L
(7)

k
=——A Im, e (k, & -~ )

-a-
P
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where yf /ep =Imef (k, coL} is the damping in
the absence of the external field. For k«kD,
Im(kD'/k')e& '(k, ~f -&up) =f(u) is a well-known
positive function' of positive u = (~0-~f )/vfk,
where vf = (me/mf)'"v is the thermal velocity.
f(u} rises from zero at u = 0, to a maximum of
0.6 at u = 1.7, after which it exponentially ap-
proaches zero as u -+~. It has a half-width
of roughly 6u = 1. Hence, the negative damp-
ing term in Eq. (6) can be appreciable only when

in the collisionless approximation to the equi-
librium longitudinal susceptibility yL of a non-
relativistic two-component plasma. Vfhen one
mass, rn, is much lighter than the other, w;
(neglecting terms of order v/c),

- NL-
Ep yf (kp &up k (0 (Llp)

=(-iek E /2m (u )[y (k, ~-(u )-g (, u))]

Otherwise there will be another contribution
involving gL, with m~ replacing me. For the
high-temperature electron-ion plasma with w

near the plasma frequency, and (, slightly above
it, the dominant term of Eq. (3) when k/kD«1
is simply

-zek. E k-NL- - 0 D
Ep y kp~ &0~ k~e-vp

2m (d 2 k
0

Physically, this requirement is a frequency-
matching condition for the external radiation
to excite an electron plasma wave and a strong-
ly damped ion-acoustic wave [whose frequency
lies in the range indicated by the right-hand
side of (7)]. It is a stringent requirement on
the monochromaticity of the external field, the
density homogeneity of the plasma, ' and the
wave number, k, of the plasma mode. When

kp/kD&&k/kD«1, one may show from Eq. (7)
that the plasma mode receiving the maximum
negative damping, -0.6A', has a wave number
given by

k -2~+
~ /1 7~2m -xsa 1 7~m ~x&2—=-I —11+I I

'
I

'I . (8)
3&~ & &2 3 m. 2 Em. i

cup/~p should be chosen small enough so that
k/kD«1 and the plasma mode is weakly damped,
but large enough to allow the radiation to pene-
trate the plasma. Although the laws of reflec-
tion and transmission at a sharp boundary do
not strictly apply to diffuse plasma boundaries,
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FIG. 2. (Negative damping/sec)/A ~p = Im(kD /k )
xqL- (k ~L ~0) as a function of k/kD ~0/"p
= 1.1, 1,05 in a fully ionized hydrogen plasma.

as a function of k/kD for u;0/x~ = 1.1 and u 0/
&up —-1.05. We conclude that when 0.6A'~yL/u~,
plasma oscillations with wave number in a small
range about the k/kD given by Eg. (8) will be-
gin to go unstable and grow. The damping may
be estimated using the collisional conductivity
value, '

yL/~f, = (6v 2m' ') '(kD'/n) In(kT/A&up).
For k/kD less than -0.2 this damping dominates
Landau damping. The growth criterion would
appear to be met easily with low-density plas-
mas and microwave radiation of kW/cm' inten-
sity. For example, if n =10"electrons jcm',
and kT = 1 eV, y L /e~ ~ 10 ', whereas A' =—10
for 1-kW, 1-cm waves. In the presence of net
gain (yl /& ' &0), plasma oscillations spon-P
taneously present due to density fluctuations
will be amplified by a gain factor exp(+ ly&+~ 1 t).
With the plasma inside a microwave cavity di-
rect detection of these growing waves may be
possible.

they are an indication of the ease of penetration
of radiation. The transmission coefficient,
given by T =4n(&oo)/[n(w, )+ I]' [where n(+0) = (1
-~p'/~0')'"] is 80% for ~0/&up =1.1, correspond-
ing to k/kD —=-,'. Hence, it should be possible to
choose a frequency ~, which both penetrates
the plasma and stimulates a weakly damped
plasma mode. Around the optimum k/kD giv-
en in Eq. (8) there will be a small range, hk/
kD, of wave numbers which receive compar-
able negative damping. When the ion Doppler
width u;k is greater than yI, this range is b.k/
kD= ,'(me/m —)'" In Fig. . 2 we plot

Im(k '/k')c '(k, (u -(u )

For very high-density plasmas, such as those
produced by a focused ruby laser, ' the instabil-
ity might be induced by the laser radiation,
although density inhomogeneity and strong damp-
ing are obstacles.

In a forthcoming paper, one of us (M.V.G.)
will give a fuller derivation of these results
as well as the spectral properties of the den-
sity fluctuations, using quantum statistical
mechanics.
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2Under certain circumstances, EL(~—2( 0) must be
retained too. If ~ —~0 = —cuz, mhere ~; is a frequency
at which the ions respond strongly (ru; = v, kz), then ~
—2&up= —~—2az, and if 2'~ &yL, the plasma mode at
—aL will participate. In this case, Eq. (1) must in-
clude an Ep term coupled to EL(~—2~0), and one has
three coupled homogeneous equations to solve. The di-
electric constant mhich must vanish will be more com-
plicated in that case, but the instability is still pres-
ent, and the order of magnitude of quantities me shall
calculate is unchanged.

Once inside the medium, ap mill be related to kp by
the dispersion relation 0 =(t)p +p kp . Since ~p
=~L, kp usually will be of 0(kv/c). Therefore, in the
following discussion we will write k for I k —kp I .

To calculate the shift precisely, one must also in-
clude an E p correction to XL(k, ~) in Eq. (1). This
will also produce a A correction to ILL(k, a) which
turns out to be negligible compared to the A2 term in
Eq. (5).

(k /kD )EL(k, uL-~p) = 1—2Z (-u/2), where Z is a
complex function which may be found in B. D. Fried
and S. D. Conte, The Plasma Dispersion Function
(Academic Press, Inc. , New York, 1961).

For example, assuming E
p is perfectly monochro-

matic, A~p/~p=~/2n= —(n~/I) ~~2k/kD, where (m/
M) is the electron-to-ion mass ratio.
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