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S(R) = J exp(iq R)o(q)dq,

y u-(0)*u- -(0)
o(q) =

3 ) - I(k+q k);
k+q k4&k F

(2)

p = crystal volume, uk(0) is the periodic part
of the Bloch function gk, evaluated at a nucleus,

Recently Overhauser and Stearns' (OS) have
interpreted Mossbauer measurements~ on Fe-Al
alloys. They concluded that there is a large
qualitative difference between the true 4s-elec-
tron susceptibility and the free-electron sus-
ceptibility go(q) due to interactions between 4s
electrons. The main purpose of this note is
to argue that their conclusion is premature
since their neglect of the k dependence of the
periodic part of the 4s Bloch functions is prob-
ably serious. Although our treatment of this
effect is not intended to be quantitatively accu-
rate, it does indicate a considerable sensitiv-
ity of the results to such k dependence, and
suggests that a detailed theory neglecting s-s
interactions might indeed give approximate
agreement with experiment.

Following OS, we consider the theory of s-d
exchange, obtaining Yosida's' Eq. (2.14} to first
order, from which one finds the spin density
at lattice site R to be

and ~k is the energy associated with gk. Also,

I(k', k) = Jg-, ~(r)g *(r')g (r)g-(r')

x v(r-r')drdr',

where gM(r) is the localized electron orbital,
and v(r) is the Coulomb interaction. The ap-
proximations made by OS in treating this, which
are essentially the same as those made in the
standard theory, ' are

u-(0) = constant, independent of k. (a)

I(k+q, k) =F (q) = fdr exp(iq. r) I g i2.

e- ~k
k (c)

Although the "justification" of (b) given by OS
is valid if the band orbitals are simply
~ exp(ik r), it is not a valid justification in
general: Even in the case v(r-r') ~ 5(r-r'),
I(k+q, k) does not reduce to the magnetic form
factor EM [because of the factor uk(r}uk+q(r)
which also occurs in the integrand of I].

As is well known, these approximations give
o(q) = g0(q)F3d(q), where y (q) is the free-elec-
tron spin susceptibility. Furthermore, as point-
ed out by OS, '~~ this yields a spin density So(R)
which, for R w 0, can give reasonably good agree-
ment with the hyperf inc field measurements
(see Fig. 2). For this we have used kF =1.2 A
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(in agreement with OS), giving a 4s conduction
electron/atom ratio of 0.66. But, as OS point
out, S,(0) is then about a factor of 7 larger than

a value which would give consistency with the
hyperfine field in pure iron.

Let us first consider (a), leaving (b) and (c)
as assumptions. Putting uk(r) = const (indepen-
dent of k) is clearly poorest when r is inside
the atomic core, and so it is for the hyperfine
experiment. However, it is only the k depen-
dence of uk(0) that is pertinent here, since the
discussion is concerned only with the ratios
of hyperfine fields at the different R. To get
a rough idea as to the effect of (a), we have
taken g-(r) to be a single plane wave orthog-k
onalized to the core electrons. Neglecting over-
lap between core electrons on different atoms,
this gives uk(0) =Ak(1-Q (I (0)f (k)j, where

fc(k) is the Fourier transform of pc*, Ak
= V'"(1-nQc Ifc (k) I')"', n = number of atoms
per unit volume, and the sum is over one core.
We then approximated gc(r) by hydrogenic wave

functions, choosing the screening constants to
match the location of the outer extremum in
r && (radial function) with that of the Hartree-
Fock-Slater function. ' The only appreciable
contribution in Ak is from the 3s orbital, and
n If3s(k) I' is only ~0.1, so we take Ak
Then

exp(-px) in $3s, is 11.1 A ' by our criterion,
the outer maximum occurring at 0.37 A; the
corresponding P's for the j.s and 2s functions
are 45 and 22 A ', respectively. The fact that
the k variation of the 1s and 2s functions is
slow compared to f3s(k) suggests that a(k} may
be approximated by a constant. We find indeed
that replacing o. (k) by 6 in Eq. (4) gives a good
approximation, for our present purposes, to
the function defined by (4). [Note that a(0) =9.]

Writing v(q) =pl(q/kF)EM(q), yl(q/kF) was
calculated using (4) in the approximation just
described, (2), (b), and (c), taking advantage
of p'/kF'»1 for simplification. The result
is shown in Fig. 1. q, (Q) was normalized so
that its singular term, which is of the same
form as that in I(,(Q), has the same coefficient
as that in I(,. This was done (arbitrarily) so
that the two spin densities S,(R), S,(R), would
be expected to approach each other at sufficient-
ly large R. We see from Fig. 1 that the essen-
tial difference between q, (Q) and I(,(Q) is that

y, decreases rather more rapidly than y0. Re-
membering that after the angular integration
in (1), one has

0

].0 k2 k4(I k2 4
V" u (0) = a(k)-24 1-——+—

~

1+—3P P& P

=- a(k)-24g(k), (4)
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where o,'(k) = 1-fls(k)(I ls(0)-f2s(k)$2s(0), 24g(k)
=f3s(k)t)I3s(0). p, the quantity appearing in
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FIG. 1. Approximations to the function (p('@ = cgi)/
(ft). With assumptions (a), (b), and (c), y(q) = Xo(q),

the free-electron susceptibility. With assumption (a)
corrected as described in the text, gq) =y&(q).

FIG. 2. 8-electron spin density as computed from
Eq. (1). Sop) and S~(R) correspond to cp=yo and y=cp&,
respectively. Only the values of S(r) at the lattice
points r =R are significant. Note the renormalization
of S(R) for 2kFR &4.25. The experimental points are
from stearns and Wilson.
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S,(0) = So(0)/1.8; (5)

showing an appreciable reduction in the discrep-
ancy between experiment and a theory neglect-
ing s-s interactions. We estimate that the er-
ror in this result as compared to the exact cal-
culation based on (4), (2), (b), and (c) is less
than 5% for S,(0) and negligible for S,(R) at
nonzero R. Also the k dependence of Ak should
decrease S,(0) slightly. The conclusion to here
is that S(0) is sensitive and S(R) is insensitive
to modifications presumably in the direction
of a more realistic approximation to the con-
duction-electron orbitals gk. In other words,
approximation (a) is probably important, par-
ticularly with respect to S(0).

A similar conclusion is also warranted for
approximation (b): I(k', k) will be determined,
roughly speaking, by uI (r), where F is the lo-
cation in the maximum of gM (r =—0.36 A s).

(r)f (0) is negligible for the 1s and 2s func-
tions, changing the a in Eq. (5) to 1; and

$3s(F) -$2s(0)/16, reducing the coefficient of
g(k) from 24 to -1.5. The closeness of this lat-
ter coefficient to 1 suggests an even greater
percent variation with k and k' than the effect
calculated above. ' However, this calculation
is complicated by the 3P and 3d core functions
(particularly). In view of the suggested sen-
sitivity, a more careful calculation should be
made. Such a calculation will involve going
beyond the simple single orthogonalized plane-
wave approximation.

Nevertheless, despite these difficulties, our
discussion leads clearly to the conclusion that
a large discrepancy between observation and
a calculation based on (a) and (b) of S(0) (even
a factor of 7) is far from sufficient to throw
out the basic theory neglecting s-s interactions.

In our opinion, the small discrepancies in
S(R) at large R might be more significant than
the relatively large one at R =0, assuming that
the experimental limits of error are meaning-

the Q' factor rendering the small difference
between p, and Xe at small Q insignificant, hence
we expect S,(0)&S,(0) and S,(R)-S,(R) for large
R. The integrals dQ were evaluated numeri-
cally, and the results are shown in Fig. 2. The
expected behavior just outlined is seen to oc-
cur. It is interesting that the nearest neighbor
distance Qn„ is already large in the sense that

S,(R) =—S,(R) for R & R„„—this is not too surpris-
ing since 2kFR —= 6. Thus we see thatnn

Si(R) = So(R), R g 0;

ful. As suggested by Zeiger, ' they might re-
flect actual deviations from the free-electron
Fermi surface, i.e., deviations from approx-
imation (c}.

Finally, we remark briefly about the relation
between the spin susceptibility )((q) [the qth
Fourier component in the response to a field
exp(iq r) j'0 and the function y(q) = o(q)/F3d(j)
First of all, the spin density arising from ex-
change can only approximately be described
in terms of the response to a local potential
X(r}—it would be exact if v(r) ~ 6(r) in the band-
local exchange matrix element and 3'.(r) ~ PM(r)'.
Even with this approximation, the identifica-
tion' of y(q) with )((q) is incorrect; the correct
relation can be shown to be y(q) =QKX(q+K, q),
where )((q', q) is the q' response to a field
exp(iq r) and K =2m x(reciprocal vector). Of
course, )((q) = )((q, q). In a gas (no periodic po-
tential), )((q', q) is diagonal. Hence, before a
knowledge of the qualitative behavior of X as(q,
q) can be transferred to y(q), further analysis
is necessary.
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A very crude idea of this can be obtained, simply,
by taking n =16 (so 24/u =1.5) in Eq. (4) and formally
maintaining approximations (b) and (c). This gives a
y(Q) which is even more rapidly decreasing than pi(Q);
S(0) becomes negative with So(0)/S (0) =—-3; and S (R) is
slightly modified for R & 0, requiring a few percent in-
crease in kF to obtain the same quality fit to the exper-
imental points. Comparison of this result with OS em-
phasizes the fact that knowledge of S(R) only at the 1.at-
tice points does not determine the integrand of Eq. (1).
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The spin susceptibility is defined in terms of the re-

sponse to a driving term in the Hamiltonian of the form
—Q.JC(r.)st, where X(r) is the applied "field,"r. , s.
are the position and spin of the ith electron, respec-
tively.
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