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to the hard-core values for polycrystalline
sources.

To demonstrate experimenta, lly the effect of
a random magnetic interaction on the angular
correlation we performed a time-differential
measurement with a sample of In'" dissolved
in Ni (less than 1 part in 10'c). The result is
shown in Fig. 2. The large anisotropy of the
172- to 247-keV cascade in Cd"' confirms clear-
ly the prediction of two frequencies for A = 2

[Eq. (7)]. A least-squares fit of the data yields
a Larmor frequency ~I = (0.995*0.010) x10'
sec-i which gives with a g factor of g= -0.318
+ 0.007,~ a magnetic field for Cd dissolved in
Ni of

ta I =65.3*1.«G.
The accuracy of this value is limited by the un-
certainty of the time calibration (1 /c) and by
the fact that the g factor is only known within

Several features of this method are worth
pointing out: (1) The presence of a low-frequen-
cy (u, L) component allows the measurement of
fields twice as large as would otherwise be pos-
sible, with a, given instrumental time resolu-
tion. (2) Very small fields are also accessible.
In the present experiment any field between 5

and 500 kG could have been observed (2) F.ields
are measured throughout the sample, not just
in domain walls. (4) Measurements may be
made at any temperature and pressure, pro-
vided that the spin-correlation time is long
compared with I/&u&. (5) Induced fields in anti-
ferromagnets may also be measured. (6) Polar-
ization in an external field may be followed in-
dependently of frequency shifts by observing
the disappearance of the low-frequency cornpo-
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FIG. 2. Time-differential measurement of a
random magnetic interaction with a source of In

dissolved in Ni. The solid curve represents the
best fit of the points to the function E(t) =Pfe
&&(1+a[1+ 2 cos(col t + y) ~ 2 cos2(~L t + p)[)+C.
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nent in the correlation function.
Aside from the famous case of Cd'" it appears

that there are quite a few isotopes available
which would allow the investigation of internal
magnetic fields with the aid of this method.
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Recently the idea that strong interactions
might have the approximate symmetry group
U(6) 42) U(6) =—W(6) was proposed by the present
authors, ' and independently, by Feynman, Gell-
Mann, and Zweig. ' In I this symmetry was
discussed in terms of the full six-dimension-
al linear group GL(6), which does not in itself
contain W(6), but whose connection to W(6) is
made through the "unitary trick" of %eyl. ' Ex-

tending the considerations of I, we shall show
in this note that the group W(6) arises natural-
ly when one enlarges the group GL(6) to a 144-
parameter, noncornpact group which will be
denoted by M(12). It will then be shown that
W(6) is the maximal compact subgroup of M(12).
While the group M(12) and all of its noncompact
subgroups —for instance GL(6) —may be con-
sidered as intrinsically broken symmetries of
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a classical Lagrangian (the intrinsic breaking
mechanism is provided by the kinetic energy
of fields' ), one encounters a difficulty when
one tries to transplant a noncompact symmetry
of this type to the quantum domain. Namely,
the canonical commutation relations are not
invariant under the noncompact group. Further-
more, the noncompact part of the group cannot
be generated in the usual fashion by the use of
currents in the second quantized theory. ' We
shall therefore concentrate on the compact
subgroup W(6) in applications, as only this
part of M(12) is meaningful in quantized theo-
ries.

There is a natural way of proceeding from
an essentially nonrelativistic invariance of the
U(6) type to a fully relativistic theory, which
automatically generates higher symmetries.
We discuss this procedure in a quark model,
as in I. Introduce the 12-component Dirac
spinor g:

0 0

py) pp~ p3~

whereas gy, f is invariant under a group with
the three generators

P~& 2P~ t 2P

(2a)

(2b)

Here, p; are Pauli matrices acting on a two-
dimensional space labeled by R and L. The
generators of GL(6), considered as a 72-real-
parameter group, can be written in the same
Pauli matrix basis as

c
Ji 0 iJ2 0=p 8 J.-=K., ' . =ip Igloo, =L., (3)0 J2 0 i i' 0 -iJ2 3 i i'

and U(6) matrices D(n) = exp(io, Ji), i =0, 1, ~ ~ ~,
3 5, where Ji = jcr y Igw X .), k = 0, 1, ~ ~ ~, 3; j = 0,
1, ~ ~, 8. The Hermitian forms ()=LtR+RtL;
igy, g =i(L1R RtL) are -invariant under L —D(n)L,
R —[D(a)]~ 'R [= D(a)R for real e .']. These
forms are invariant even if the parameters
o are complex. The matrices D(a) then form
a representation of GL(6) as do the matrices
[D(o)]t ' =D(o, *). They contain a subgroup
which is isomorphic to the homogeneous Lo-
rentz group. ' Thus it/ and tTy, g are not only
U(6)-, but also GL(6)-invariant. They also
have additional symmetries that mix R and L,
which we shall presently identify. gg is invari-
ant under a three-parameter group whose gen-
erators are'

po being the unit matrix in the RL space.
The fact that gP [gy, g] is invariant under the

transformations generated by the matrices of
Eq. (2a) [Eq. (2b)] as well as under those gen-
erated by K; and L; of (3) implies' that it must
be invariant under a larger group whose gen-
erators are obtained by completing the commu-
ta, tion relations between E;, Li, and p&. It is
easy to see that in this way we obtain a non-
compact group' M(12) with 144 generators:

(' )=p SJ., (
'

. )='p RZ. ,

2
p g J 2 ip g J

which leaves gg invariant, or

p J., p J., ip J., ip J., (4b)

which is equivalent to

z. = ~[(s+f + T)-(v+x)]

under Fierz transformation. [The terms (S+p
+ T) and (&+A) are, respectively, Zf and gl'
of I.' It was noted there that they are separate-
ly invariant under U(6). ] Physical implications
of this symmetry have already been studied
in references 1 and 2; a characteristic of this
symmetry is that a boson supermultiplet ex-
hibits a parity doubling structure, i.e., the
supermultiplet (6, 6*)0+ (6*, 6) for instance con-
tains nonets of vector, axial vector, scalar,
and pseudoscalar mesons. The difference of
this W(6) from the one discussed in references
1 and 2 appears in the transformation proper-

which leaves fry, g invariant. The groups gen-
erated by (4a) and (4b) are isomorphic. How-
ever an essential difference of these two pos-
sibilities arises when we identify p, 1 with
the parity operation. The maximal compact
subgroup of M(12) is W(6). For the case (4a)
it is spanned by the generators M,

*= (p, + p, )J, ,
whereas for (4b) by N, =(p, + p,)J,.

The group W(6) generated by the algebra. N

=fN;, N; ) is isomorphic to, though not identi-
cal with, that discussed in references 1 and 2.
With respect to parity O', O'N; O '=N; . The
mass term mug is not invariant under this
group. A four-quark interaction Lagrangian
invariant under this group is

~,.„t= g(ky50)',
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Table I. Transformation properties of bilinear covariants under the algebras M and &.

Covariant Parity
Transformation

under M
Transformation

under +

$(yi —bi oA. o)g
4~of

(t'V5(~i-~io~o)(I'

Jy5A, o(I

0&o(~i-~io~o)4'
g~yoA, og

&'&a~i4

ging 5~i'

& ad%&

(35, 1)(1, 35)
(1 1)

(6+, 6)+3(6, 6+)
{6*,6)$(6, 6+)
(35, 1)%(1,35)

(1 1)
(6*,6)(6, 6~)
(6*,6)(6, 6*)
(35, l)(1, »)
{35,1)(a, »)
(e+, 6)(6, u+)

(6+, 6)%(6, 6+)
{6+,6)(6, 6+)
(», 1)(1, 35)

(1, 1)
(35, 1)$(1,»)

(1, 1)
(6+, 6)(6, 6+)
(6~, 6)$(6, 6~)
(35, 1)(1, »)
(O+, 6)(6, ~+)

(S~, 1)(1, 35)

ties of the bilinear covariants. The new trans-
formation properties are listed in Table I.
The structure of meson supermultiplets also
follows from this table. The kinetic energy
and the mass term in the Lagrangian both con-
tribute to an intrinsic breaking of this W(6)
(in the sense of I) that transforms like a com-
ponent of the representation (6, 6*)8 (6*,6).

The group W(6) generated by the algebra M

={M;+,M; ) is also not identical with the one
discussed in references 1 and 2.

A four-quark interaction Lagrangian invari-
ant under this group is evidently

which, upon Fierz transformation, becomes

g. = ~[(S+P+ T)+(V+A)].
int

The mass term m gg is invariant under this
group. The algebra M is parity preserving,
in the sense that [M. , 6')=0. In the represen-
tation of the Dirac spinor in which "big" and
"small" components, 8 and 8, are separated,
yo is diagonal:

It can be easily shown that the two commuting
algebra, s {Kf+)and {M; f generate independent
U(6) transformations in S and B In Table I.,
we show the transformation properties of bi-
linear Dirae eovariants under M. The meson
supermultiplet (35, 1)% (1,35) with f. = 0 con-
sists of particles of even parity, including
octets of normal and abnormal scalar mesons
and two nonets of axial vector mesons. The
supermultiplet (6*,6) (6, 6*) with I.= 0 con-

tain particles of odd parity: two nonets of
pseudoscalar mesons and two nonets of vector
mesons. The kinetic part of the Hamiltonian,
which breaks W(6) symmetry, transforms ac-
cording to (6, 6~) 8 (6~, 6) whereas the mass
term does not break this W(6).'

Taking together the results of I and of the pres-
ent paper we see that there are "three roads"
to W(6) symmetry The. first "road" passes
through the unitary trick of %'eyl and it is not
clear whether it leads to a destination within
the realm of quantum theory. The other two
are routed via the large noncompact group
M(12), '0 and they indeed both stay within the
boundaries of quantum theory. They differ in
the parity structure of their supermultiplets.
It is an important experimental question to see
which (if any) of these roads is actually traveled
on by nature.
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interesting discussion on this point.
It cannot be stressed too strongly that this sub-

group is not identical with the physical Lorentz group.
The generators of this subgroup are the "spin» part
S~& (as opposed to the "orbital" part I.z&) of the gen-
erators M~& =L&+S~j of the Lorentz group. To the
extent that Szj is approximately conserved fwhich
is implied by the approximate U(6) invariance], so
is Lzj Mzj Szj (M Gell-Mann, private communica-
tion). In a state in which (I.zj) = 0, we may utilize
the transformation properties under U(6) to deduce
the spin of the state.

From here on, whenever we write a set of gen-
erators G~ we always refer to a group of transfor-
mations exp(ia~G&) with real parameters az.

This is a consequence of the Baker-Hausdorff
theorem; see, for example, D. Finkelstein, Com-
mun. Pure Appl. Math. 8, 245 (1955). In a more
pedestrian way the invariance of gg fgy5$] under
the transformations (4a) [(4b)] can be checked by
dir ect calculation.

We follow here the customary notations from the
Fermi theory of beta decay.

~All W(6) and GI (6) groups considered in our work
contain (as has been emphasized in I and in this pa-
per) a U(6) subgroup with generators p ReJj This
subgroup leaves the mass term invariant. The fact
that the mass term does not violate U(6) invariance
has been noted independently by M. A. B. Beg and
A. Pais, to be published.

Upon application of the unitary trick M(12) leads
to U(12). This symmetry could also play a role only
in Euclidean field theory. Whether this has anything
to do with physics in our Minkowskian world is an
open question.
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In this note we study some consequences of
the assumptions that the effective strongly in-
teracting particle currents of both vector (V)
and axial vector (A) kinds associated with the
semileptonic processes each transform accord-
ing to the adjoint representation of the group
SU(6). We discuss furthermore the implications
of more restrictive dynamical assumptions
which relate to each other the adjoint repre-
sentation for the V current and the one for the
A current. In this latter context we also en-
counter the question of the SU(6) completion
of the Goldberger- Treiman relations. In ac-
cordance with the general considerations' about
the interpretation of SU(6), we restrict our-
selves for the present to the low-frequency
limit of these effective currents, taking into
account only effects up to and including the
first order in U/c.

(i) Vector current. Up to this order we must
consider two kinds of terms: (a) the weak charge
term proportional to the Fermi constant Gy
which gives the allowed Fermi transitions,
and (b) the weak magnetism term. ' In the spirit
of the proportionality assumptions between
these terms and the corresponding electromag-
netic ones, our assumptions will here be the
straight transcriptions from those made ear-
lier' for the electromagnetic case. Thus we

postulate that the weak charge operator trans-
forms like an (8, 1) member of a 35 and the
weak magnetic moment operator like an (8, 3)
member of a 35. Again, as for electromag-
netism, we do not assume that the same 35
representation appears in both cases. The
meaning of this last proviso will be discussed
in more detail elsewhere. 4

(ii) Axial vector current. At low frequen-
cies we have here only the Gamow-Teller tran-
sition term proportional to GA. This term is
now assumed to transform like an (8, 3) mem-
ber of still another 35.

With these specifications, we can now write
down the effective low-frequency four-point
vertex for the interaction between leptons and
strongly interacting particles. We consider
specifically the interaction with the baryons
of the 56 representation' of SU(6), which may
be written as'

3GA-- 8 j
'5~2 "L
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