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The spin-unitary-spin supermultiplet theo-
ry of GGrsey and Radicati and of Sakita has
aroused much interest on account of its many
impressive results. ' The fact, as originally
recognized by Sakita, that the theory has been
formulated really only in a nonrelativistic sense
raises questions of interpretation as to the man-
ner in which this theory is to be understood
as some kind of limit of a relativistic theory.
The attention of many authors is currently fo-
cused on these questions. One approach has
been suggested by Beg and Pais, wherein the
underlying SU(6) symmetry group is considered
to hold only in the zero-momentum limit as
a "boundary condition" on a relativistic theo-
ry whose invariance group is just the direct
product of the Lorentz group and the internal
symmetry group SU(3). The way of incorporat-
ing these constraints is given by Beg and Pais'
in the form of a relativistic "completion" pro-
cedure. An entirely different approach is that
of Marshak and Okubo, 5&~ who start with a three-
field quark model and look for possible under-
lying higher unitary groups when one mixes
the so-called Casimir projections of the three
fields using the y~ operator of the Dirac theo-
ry. The algebra of the groups underlying such
three-fieM models has also been discussed
by Bardakci et al. ,

' by Salam, and by Delbour-
go, Salam, and Strathdee, and, in still anoth-
er form, by Feynman, Gell-Mann, and Zweig. "

It appears to us that in such discussions a
momentum-space approach can be quite illu-
minating. The reason is that, after all, it is
only in the zero-momentum limit that one has
the encouraging results of the SU(6) supermul-
tiplet theory. %e further feel that a natural
framework for their discussions is provided
by the Foldy-Worthuysen" (FW) representa-
tions for spin-~ and spin-~ particles. This
is due to the fact that, in the Fi representa-
tions, on the one hand, the "completion" pro-
cedure of Beg and Pais is easily constructed,
and on the other the y~ projections used by
Marshak and Okubo'~ have a direct meaning
as giving the positive- and negative-energy
components even when the momentum is non-
zero.

In this note, we take the approach outlined

above. In Sec. I we give a short resume of the
F% representation and indicate briefly its use
in the relativistic completion procedure of Beg
and Pais. ~ In Sec. II, we then go on to consid-
er the symmetries underlying the three-quark
model in a momentum space formulation. As
already noted by Okubo and Marshak, we find
that the free-field Hamiltonian is invariant un-
der a U(12) group. It is also shown how one
may write a four-fermion interaction which
is U(6)-invariant in the limit of large quark
mass, but otherwise contains parts which re-
duce this invariance to just U(3).

I. Resume of FW representation. —(a) Spin-~
Dirac theory. The Dirac equation is in standard
notation

i =(a p—+pm)g.at

In the FW representation obtained by applying
the unitary transformation"

iS

where

(2)

(E +m)+y p

(E )p~s ~p +(p +~ ) r p~
p p'

the Dirac equation becomes

i sy/st = pE y.
p

' (3)

In the usual Pauli representation of Dirac ma-
trices, the normalized F% spinors are simply

for positive energy, and

for negative energy. These spinors do not de-
pend on the momentum and are trivially obtained
from constant two-component Pauli spinors.
This is the reason why the Beg and Pais "rel-
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ativistic completion" ~ for spin-~ particles will
be trivially obtainable in the FW representa-
tion. To go to the usual Dirac representation
one simply applies the transformation e

Now, in the Dirac theory the spin and orbit-
al angular momentum operators are not sep-
arately constants of motion. However, one can
define the so-called mean-spin operators" ~"
Z and mean orbital angular momentum I, which
are separately constants of motion. These are
given by

Z=o ip-(exp)/E -px(oxp)/[E (E +m)], (4)
p p p

I =Xxp,

where

X=x+iPa/(2E )

-i[P(a.p)p-i(Z xp)lpl]/[2E (E +m)lpl].
P P

The advantage of the F% representation is again
seen in that these operators have the simple
form of the usual spin operator cr and the orbit-
al angular momentum operator

xxp=i(s/sp) xp.

(b) Spin--, theory. The Rarita-Schwinger'~
equation for spin -', has been written in a reduced
canonical form by Moldauer and Case" as

8
~ (S/2) 0 (S/2 )+ (S/2 ) yBt

where 4 ~s»& is an eight-component spinor (the
four components required to describe a spin--',
particle are naturally doubled since both posi-
tive and negative energy states appear in the
relativistic theory). Using a theorem of Case, "
an F%-type transformation can be carried
through, namely. '

+ (S/2) U@' (S/2)

whereby 4(s/» satisfies the equation

. 8 14 0
st (3/2) 0 -1~ P (3/2)'

. 8 14 0
st (3/2) 0 -14 P (3/2)'

(p2 + m2)1/2
p

The transformation U is given by

U= 1,cos2y-ip, sin2 p,
where 1, is 2x2 unit matrix and p, a 2X2 Pauli
matrix,

o '

acting between the positive- and negative-en-
ergy components of the eight-component spinor,
and where

tany =—=p
m

(4)p'+ m'
(8/3)p'+ 3m'

0

(')p'+ m'
0

(8/3)p'+ 3m'

; p=~P). (10)

The completion procedure of Beg and Pais for
the spin-~ baryon states occurring in the 56-
dimensional representation of SU(6) is easily
carried out in the FW representation. Thus,
for example, corresponding to the nonrelativ-
istic spin-&s spinor,

spinor in the FW' representation is simply

the relativistically completed eight-component

and is independent of the momentum. In the
usual representation, one obtains the momen-
tum-dependent spinor by applying the inverse
transformation U. In this manner, one can
easily carry through the completion procedure.
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II. Three-field model. —Let gfp, i=1,2, 3,
be a U(3) triplet of Dirac spinor operators in
momentum space. Making use of the constant
mean-spin operators Z introduced in Eq. (4)
and the nine generators of U(3) for the triplet
representation, '~ namely, XA (A = 0, 1, , 8),
we may construct the 36 quantities

fdpg X SZ
p A I p

(A=0, 1, ~ ~ ~, 8, p =0, 1, 2, 3),
where

ana

hip
'%(I +'Y4 9 pi

'6p = x(I-r4 0' p.

(i6)

In terms of the $.
~ and qz~, the free-field

Hamiltonian can be written as

tive-energy projections of the cp;&, given, re-
spectively, by

and

A =Jd'py 4 So y
P A p P

(12)

(A = 0, 1, ~ ~ ~ , 8, p =0, 1, 2, 3, y =0, 1, ~ ~ ~ , 35),

where

cd = 1.
Let us look at the free-field Hamiltonian

3
H = p fd'p g. i'(o, p+ pm) y. ,0 . ip zp' (13)

which in the F% representation takes the sim-
ple form

These may be used to generate a U(6) group,
which we call the group U&(6) in order to dis-
tinguish it from the various U(6) groups being
discussed in the literature. The relation of
our U~(6) group to the Sakita-Gtirsey-Radicati
group is made transparent by going to the FW
representation in which the above 36 genera-
tors simply become

and is thus seen to be invariant under a group
U~"'(6) S U~"'(6), where the groups Uo"'(6)
and U~+'(6) are generated, respectively, by

(hip
A o~=f( 'tX S(x t d'P, $ =

$2pr p A up '
p P'

A "'= fq tX Sc q d'p, q = (is)

The generators A of U~(6) can be expressed
as

A =A &'~+A &'&.

y r y

We may go even a step further, in that we anti-
commute g,pt and q,p in Ho and drop the infinite
constant due to the anticommutator, obtaining

3 T
H '= fd p(( 8 +t) g ). (20)0 p-p p p

Here g~ is the transpose of g~, and g~* is
the complex conjugate g~. Thus Ho' is in fact
invariant under a group U(12),' whose trans-
formations act on the 12-component spinor
operator

H0 =Z, fd'P &pV,p~r. 4V,». .(i4)

fd'p y. I[i(s/. sp) xp]rp . . (15)

We may also consider the positive- and nega-

and is clearly seen to commute with the 36
generators A~, for y~ commutes with i. Thus
Ho is invariant under Ug(6). Also invariant
under this group is the mean orbital angular
momentum operator

i=+ fd'pg t'(x. xp)y. .

p inp j
This way of searching for higher group symme-
tries like U(6) S U(6) and U(12) in a three-field
model has also been discussed in a different
approach by Okubo and Marshak. '&' %e may
emphasize here what was already mentioned
in the beginning of this note, that the y~ pro-
jection in momentum space employing the F%
representation has a very clear meaning.

The question to be considered is whether
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we can write an interaction Hamiltonian in momentum space, which has any of these higher symme-
tries. Let us write a four-fermion pseudoscalar (P} interaction in momentum space which would be
equivalent to a local x-space interaction, namely,

3

Z fd'pl »2»3(0 ty4y50 )-(0
p ty4y50

g, j=1 1 2 3 ip, 4 5 ip, jp~ 4 5 jp4
' (21)

where we take

Since

Pz+Ps = P2+P4 ~

is(p, ) -is(p, )e 'y~y, e =ay4y, +by4yio (p, xp, )+cicr p, +.dio. p„

where a, b, c, and d are functions of p„p„and m, we can write H, in the F% representation in the

form
3

Hl = p fd p d p21 p [qr. (ay y +by y io'(p xp )+cio p +dio p )y. ]

&&[(p. (a'y y +b'y y io'(p xp )+c'io. p +d'io p )y. ]. (23)

Here a', b', c', and d' are the same functions of p„p„and I as a, b, c, and d are of p„p„and
m. This interaction contains a part

3
H '= p fdp dp dp (V. ay y y. )(rir. a'y y y. ),1 .

1
1 2 3 spi 4 5 A/2 jps 4 5 jp4'

7

(24)

which is invariant under U~(6) (since y, and

y, commute with 5). The remaining part of

H, breaks U&(6) symmetry, and is invariant
only under the group U(3).

If the mass m of the basic triplet g. is taken
to be very large, then one sees easily that the
orders of the coefficients a, a', b, b', etc. ,
are

a, a'-1,
c, c', d, d'-1/m,

b, b'-1/m

Thus we see that in the limit of very large
quark mass, the dominant term of H, is U~(6)
invariant. The next order term has the form

3
H "= p fd'p d'p d'p

i, j=1

36-dimensional representation}, and thus breaks
the U&(6) symmetry in a well-defined way while
preserving the lower U(3) symmetry. We see
that, in contrast to the results of other au-
thors, ' '~' it is not here the kinetic-energy
part of the free-field Hamiltonian, but a part
of the interaction itself that breaks the U~(6)
symmetry.

It may be remarked here that, since H, is the
momentum-space equivalent of a local relativ-
istically invariant interaction, the correspond-
ing S-matrix element will be crossing symme-
tric.

Before concluding this note, we should like
to mention that if we do not wish to stick to
the requirements of "locality" of the interac-
tion, then we can write a Ug(6)-symmetric
interaction in the momentum space, namely,

&& [(V'.
p y4y5V p

}(e
p

o p'V .
p

)
iP~ 4 5 i@2 jP~ jP4

+(V'
p

o'p9rip (re
p y4y5rir p

}]r

which behaves as a component of the regular
tensor operator of U~(6) (i.e., belongs to its

(25)

3

H, = Z fd'p(s, p~y4y5&, p}(C pIy4y5& . ), . .

3
l'»(e y4y5+ )(e. ~y4y5e }. (26).
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However, it must be recognized that for such
a theory the Lorentz invariance is clear only
when it is looked upon as an unquantized C-num-
ber theory.

%e are deeply indebted to Professor R. E.
Marshak, Professor S. Okubo, and Professor
C. Ryan for their kind encouragement and
critical comments. One of us (R.) wishes to
thank the U. S. Educational Foundation in Pak-
istan, and the other (L.K.P.) to thank the U. S.
Educational Foundation in India for the award
of Fulbright Travel Grants.

Note added in proof. —After this note had
been written we received a preprint of a paper
by K. T. Mahanthappa and E. C. G. Sudarshan,
in which these authors have also employed the
operator Z for constructing a U(6) algebra.
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DECA& y +(1660}—1' *(1405)+vt'
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Thus far, particles of the same known spin
and parity have been successfully assigned into
SU(3) multiplets by using the Gell-Mann-Okubo
mass formula. ' Attempts to classify particles
whose spins and parities are not well established
into particular multiplets on the basis of the
mass formula may lead to contradictory assign-
ments, as in the case of the Y, '(1660).'~' Ad-
ditional information on the multiplet assignment
of a particle may be derived from its decay
modes. Where the SU(3)-breaking interactions
can be neglected, SU(3) gives definite predic-
tions of branching ratios and selection rules
for the decay of a member of a given multiplet
into members of other multiplets. ~ We report
here experimental evidence for the decay

K +t}- Z++n +n +n

K +P —Z +n++n++m

K +P —A+n +no+ad

(1)

(2)

(3)

Reactions (1) and (2) give information on the
decay Z(1660)- A(1405)+v, and Reaction (3)
is used to give an upper limit on the amount of
Z(1660) —Z(1365) + v.

y', '(1660) —Y,*(1405)+v, which can be used
as evidence that the F,*(1660}is a member of
an octet if y, '(1405) is assumed to be a unitary
singlet.

The data on the 1',*(1660) or~ Z(1660}decay
modes were obta, ined from an analysis of the
following reactions:
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