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The interaction of light with light in a plasma
has been treated both quantum mechanically!»?
and classically.® However, the results obtained
in references 1 and 2 differ from those in ref-
erence 3. This difference becomes very large
at high temperatures. There have been contro-
versies over the source of disagreement.

We first note that these authors have consid-
ered somewhat different phenomena. In refer-
ences 1 and 2 the quantity of concern is the
cross section for scattering of light by light in
a plasma, while in reference 3 it is the amount
of scattering of a light beam incident on a plas-
ma which is excited by two light beams. In the
former case two correlated outgoing beams
are observed, while in the latter case only one
light beam is observed. There are more pro-
cesses contributing to the latter in addition to
light-light scattering. This will be elucidated
later.

We further note that in light-light scattering,
one should distinguish the case of strong beams
from that of weak beams. In references 1 and
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In (1), é,, é,, é,, and &, are the unit polariza-
tion vectors of photons 1, 2, 3, and 4, respec-
tively; w'=w;=w;, @ =w,~w,, k' =k -ks, k
=k -kz, V is the volume of interaction of the
light beams in the plasma; 7 is the total time
of interaction; ST(E, w) is the Fourier trans-
form of the time-ordered density-density cor-
relation function; S(k, w) is the same correla-
tion function as ST(E, w) but without the time
ordering. As is well known, ST(E, w) and S(k, )
can be expressed in terms of the longitudinal
plasma dielectric function e(ﬁ,w):
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2, the light-light scattering cross section is
calculated only to the lowest order in the per-
turbation expansion and is only valid in the weak-
beam case. When the intensities of the beams
are strong enough so that light-light scattering
predominates over the lower order single-beam
incoherent scattering, one has to take all the
higher order terms into account. Also, we
show that there is an inelastic-scattering pro-
cess not considered previously®? which is of
the same order of magnitude as the elastic pro-
cess. On the other hand, in the classical treat-
ment,® approximating (17 (K, w)I?) by | ¢V, w))I?
to obtain the scattering cross section {n‘*’(, w)
being the Fourier component of the electron
density to the lowest order in the external fields]
cannot be justified a priori. We show below
that with neglect of an “intrinsic” four-parti-
cle correlation [Eq. (9)], the above approxima-
tion is valid.

The transition probability for photons 1 and
2 going into 3 and 4 (see Fig. 1) in the lowest
order, after summing over all final plasma
states, is given by
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At a zero of Ree(k, w), a resonance in the scat-
tering occurs. The first term in the right-hand
side of (1) corresponds to elastic scattering,
with the plasma state unchanged. This term
has been obtained in references 1 and 2. The
second term in the right-hand side of (1) cor-
responds to inelastic scattering, each photon
receiving an energy transfer w and momentum
transfer k from the plasma. At w=wp, this

@)



VOLUME 14, NUMBER 12

PHYSICAL REVIEW LETTERS

22 MARCH 1965

®3s X3 Oy Ky

k

s Xy W5 ko

1:

FIG. 1. The scattering of photons 1 and 2 into 3 and
4 via the plasma (the shaded part) in the lowest order.

latter term is of the same order of magnitude
as the elastic-scattering term.

Next, we consider the case when two strong
laser beams 2 and 4 are applied to the plasma
and only the scattering of beam 1 into beam 3
is observed. Then we have to include all pro-
cesses as long as they give rise to scattering
of beam 1 into beam 3. For instance, we have
to take into account not only the scattering of
beams 1 and 2 into beams 3 and 4, but also that
of beams 1 and 4 into beams 3 and 2. To the
lowest order their contributions are in fact pro-
portional to the first and the second term of
the right-hand side of (1), respectively. There
are also other contributing inelastic processes
in which the plasma receives K, +w.

The Hamiltonian of the plasma-photon system
is given by

H=H,+H,+H,, (4)

where H, is the Hamiltonian of the plasma and
the free radiation field; H, represents the in-
teraction of beams 2 and 4 with the plasma;

and H, is responsible for the scattering of beam
1 into beam 3 in the plasma. In H, and H,, the
A.] term will be neglected.?

We remark that although the matrix elements
of H, are small, the matrix elements of H, are
greatly enhanced by the fact that both laser
beams 2 and 4 are of high intensity.

The probability of transition of photon 1 to
photon 3, after summing over the final states
of the plasma and those of photons 2 and 4, and
after averaging statistically over the initial
plasma states, is given by
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In (5), n, and n, are the number of photons ini-
tially present in beams 2 and 4, respectively;
() denotes the ensemble average over the ini-
tial plasma states; p_j(t) =expGH ot /F)p_i/
xexp(-iH ot /%), p_}% being the Fourier compo-
nent of the electron density operator; C,-j
=2nhe*(m®Vw;w;)~1%;+¢5; T is the time-order-
ing operator. Notice that M is the amplitude
for the scattering of photon 1 into photon 3 which
is linear in H, but to all orders in H,. Equa-
tion (5) is just the result of the usual S-matrix
theory, immediately giving rise to Feynman
diagrams which correspond to the various phys-
ical processes mentioned above. However, it
is now more convenient to rewrite the ampli-
tude M in the following form:
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where
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Notice that N —k' —w’ is the Fourier transform of the electron density operator in the interaction
picture defined by H,+H,, and its expectation value is the Fourier transform of the electron density
of the plasma under the influence of laser beams 2 and 4. The probability of transition of photon 1
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to photon 3 can therefore also be written alternatively as
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Equation (8) is the quantum analog of the classical formula* P~ (In’

make the following approximation:
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In doing so we have neglected the diagrams in which all four vertices are connected, which corre-

spond to an “intrinsic” four-particle correlation.

By making use of Wick’s theorem and the multiple-commutator nature of the expansion of N_j, k’,

given by (7), it is not too difficult to show that within the approximation (9) one can write
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where the suffices n,n, and n,n, have been omitted for clarity. Similarly one can also show, within
the approximation (9), that in the perturbation expansion of (N_E;, —w’) according to (7), all higher
order terms in H, beyond the first order vanish. As a result, the probability of transition of photon
1 to photon 3 is just given by expanding (8) up to the second order in H,. This is of course equal to
the P given by (5) when expanded to the same order, although it is difficult to visualize the cancella-
tion of the higher order terms directly from the perturbation expansion of (5).

We obtain for the counting rate of photon 3 per unit interaction volume
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where d,, d,, and d, are the number of photons
per unit volume for beams 1, 2, and 4. In the
presence of beams 2 and 4, the second Kroneck-
er 6 function makes the direction and frequen-
cy of the probing beam 1 no longer completely
arbitrary. The factor V on the right-hand side
of (11) indicates that the counting rate per unit
volume is proportional to the total volume of
interaction. We remark that since the roles

of beams 2 and 4 can be interchanged, there

is also a term for dI'/dQ, exactly the same as
the right-hand side of (11), with w and k replaced
by -w and —E, respectively.

One can show that Eq. (11), which has taken
all higher order terms into account, agrees
with the result in reference 3. This is because
(NTN) does factorize into (NT)(V) and all the
higher order terms vanish in the approxima-
tions (9). However, as we have shown above,
this cross section includes contributions not
only from the process of elastic light-light scat-
tering, but also from the process of inelastic
light-light scattering (plasma receiving tZw )
and from other inelastic processes in wh1ch
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the plasma receives twp. Furthermore, the
cross section in reference 1 is larger than that
of (11) because interfering higher order terms
were not considered.
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man for criticism which leads to the consider-
ation of higher order terms. One of the authors
(H.C.) wishes to thank Professor P. C. Martin
for discussions. The other author (Y.C.L.)
wishes to thank Dr. N. Zabusky for a critical
reading of the manuscript.
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