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The measurement of the n P charge-exchange
differential cross section described in the pre-
ceding Letter by Mannelli et, al. ' provides an
excellent test of the Regge-pole hypothesis.
The particle or resonance exchanged in the
crossed channel must have isotopic spin «1,
zero baryon number, positive G parity, and
parity (-IP, where 4 is the spin of the parti-
cle. The only presently known candidate is the

p meson. However, if the presently accepted
spin and parity assignments for the I3 meson
are not correct, the I3 could conceivably be ex-
changed as mell.

We assume in our analysis that only the p tra-
jectory is exchanged. Our expression for the
differential cross section, including both the
spin-flip and spin-nonf lip contributions, is thus
given by'
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The first term in the expression for B'(t) is the
spin-nonf lip contribution whereas the second
arises from pure spin flip. From this it follows
that b"' and 5' ' are related to the p coupling
constants as follows:
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where m„and mN are the pion and nucleon mass-
es, n(t) is the trajectory of the p, s and t a,re
the usual Mandelstam variables, and

where

dn(t)=R—
p

Making use of the high-energy approximation
s ~2mNE, where E equals the total energy of
the incident pion in the laboratory system and
simplifying our expression for dvcex/dt, we
obtain

do B (t) fz)
{I+ tan'[-,'mn(t)]}l

~l
. (3)

This equation predicts that a plot of 1n(da/dt)
versus lnE at constant t will yield a straight
line with slope 2n(t)-2. In order to verify the
above prediction and to determine the slope we
performed a least-squares fit of 1n(do/dt)(E, t)
to the form

N

Q m (t)(i~)
n =0

at constant t using the data of Mannelli et al. '
at Plab=6, 8, 10, 12, 14, and 16 GeV/c. We
used t intervals of 0.04 (GeV/c)' from t = 0 to
t =-0.32 (GeV/c)'. For all values of t, reason-
able straight-line fits to the data were obtained
(see Fig. 1). At certain values of t we obtained
slightly better fits for N =2 and 3. We can ex-
clude these fits, however, since their extrapo-
lation to 3.8 GeV/c gives results which are in
contradiction mith existing experimental data.

From m, (t), the slope of the straight-line fit,
we obtain the trajectory n(t) which is listed in
Table I. Fitting these values of n(t), with the
constraint that n(t =mp') = 1, to polynomials
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scattering data. ~ It should be remarked, how-
ever, that a perfectly constant B(t}would not
be able to explain the flattening of dccex/dt in
the forward direction as reported by Mannelli
et al. '

Near t = 0 the residue function B(t) is given
by b"'(t), since the factor t/4-mbt' approaches
zero I.n order to compare the values of b"'(t =0)
with b"'(t =mp'), we evaluate Eq. (2) by taking
y'&„„/4w =0.5, y'pbt~/4m = 0.5, '~' and e = 0.64.'
This gives b~~'(mp') = 25 (GeV/c) ', which is al-
most identical to bu'(-0. 02}.

The above analysis has shown the consistency
of the data with the E~( ) energy dependence of
the charge-exchange amplitude, Acex, defined
by

FIG. 1. ln(da0ex jdt) versus lnE at t =—0.06 (GeV/c) .
do'

(E, t) =; [ReA '(E, t) +Imk '(E, t)] (5)

of the form
and s ~ 2m'. Dispersion relations now pre-
dict that

n=o"
we find that N = 1 gives the best fit, namely,

&(t) = 0.64~ 0.02+ (0.64~ 0.04)t. (4) since

ReA cex = tan 2a(t),
cex

Removing the constraint that o. =1 at t =mp',
a(t) is still consistent with a straight-line fit,
but with a slope of only 0.40+ 0.40 (GeV/c)

Also listed in Table I is B(t) obtained from
m, (t) and a(t), using Eq. (3). Notice that B(t)
does not seem to display any marked t depen-
dence. In fact, as demonstrated by a least-
squares fit, B(t) is consistent with being a con-
stant, with a value of 1'I.9+ 2.4 (GeV/c)
This is in sharp contrast to the exponential t
dependence of the residue of the Pomeranchuk
trajectory as evaluated from mP and PP elastic

B(t)
[{GeV/c) ]

-0.02
-0.06
-0.10
-0.14
-0.18
—0.22
-0.26
—0.30

0.58+ 0.06
0.60+ 0.06
0.58+ 0.06
0.63~ 0.07
0.48+ 0.10
0.40+ 0.11
0.64+ 0.14
0.45+ 0.24

23.2 + 6.8
21.1& 5.9
21.0+ 5.3
15.5~ 5.2
18.5~ 7.9
33.4~ 13.8

8.2~ 5.4
45.4+ 39.1

Table I. Values of n(t) and B(t) obtained from least-
squares fits.

Red (E, t) =)I ImA (E', t)~, — jdE'f QO

b,o=-v -v = ImA (t =0),
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S cex (6)

where g are the m P total cross sections. We
obtained values of av(E) from the recent mea-
surements of Galbraith et al. ' in the momen-
tum range 6 to 20 (GeV/c). Since we have found
ImA „(t=0) E~(0}, Eq. (8) predicts that b,o
has an En(0}-I energy dependence which we
have verified within the experimental errors
using a least-square fitting analysis similar
to the one performed for dvcex/dt. It was found
that a(0) = 0.56+ 0.15 which is in good agreement
with the values of a(t) obtained from the charge-
exchange data.

To determine R(0) using unitarity and the ex-

= tan —n(t)E
v e(t)
2

for in& cex = E~( . At t = 0 we find R (0) = 1.5
+ 0.2 using Eq. (4} to determine o.(0).

This value obtained using dispersion relations
may be checked experimentally by making use
of the optical theorem:
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perimentally measured quantities, b o and

(docex/ t)f = 0~ we combine Eq. (5) and Eq. (6)

ReA(f = 0) [32m(do/df), -(~o)']"'
ImA(f =0) b,o

(9)

Having shown that do/dt and b.o have the same
energy dependence within experimental errors,
we see from Eq. (9) that R(0) is energy inde-
pendent. Approximating (do/dt)f 0 by (do/
dt)f - 0 02 in Eq. (9), we find R(0) = 1.15~ 0.35.
This agreement with the value of R(0) obtained
using dispersion relations establishes the con-
sistency of the two experiments with unitarity,
dispersion relations, and the E ( ) energy de-
pendence of Acex
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It has recently been proposed' that the SU(6)-
symmetry scheme, involving the spin and uni-
tary-spin independence of forces between SU(3)
triplets such as quarks, ' can be applied to the
physics of strong interactions. Subsequently,
shell models involving both LS-coupling and
jj-coupling approximations have been investi-
gated treating the triplets as spin-~ fermions.
Alternately, LS-coupling models have been pro-
posed' which treat quarks as para-Fermi par-
ticles; these models require complete symme-
try of the three-quark wave function in the space,
spin, and unitary-spin variables. The purpose
of this note is to explore the characteristics
of the symmetrical jj-coupling shell model for
baryon resonances and apply the results to in-
terpretation of current data concerning baryon
resonances and "shoulders. "

We start with a spin-~ SU(3) triplet such as
the quark triplet, although more sophisticated
structures' &' could be introduced. Since the
quark mass appears very large and since the
binding energies of the baryon resonances are
presumably large, ' we adopt the jj-coupling ap-
proximation. It is reasonable to assume that
the three quarks which make up the 56-dimen-
sional symmetric baryon representation of SU(6)

are in s states4 to form the basis of a shell mod-
el; we therefore require symmetric quark wave
functions and thus require the same Young dia-
gram [a] for the jj-coupled basis functions as
for the unitary-spin basis functions. The lat-
ter requirement thus distinguishes the current
model from the one proposed in reference 3.

We thus propose that there exist supermul-
tiplets of baryon resonances which transform
according to the three-particle symmetric rep-
resentation of SU(6j+3) for a shell of given j,
and further propose the following chain of sym-
metry breaking. '

SU(6j + 3) —SU(3) Nj SU(2j + 1),

SU(2j+1)- Sp(2j+1) -O'(3),
SU(3) —broken SU(3).

(1)

(2)

(3)

The SU(3) applies to the unitary spin, the SU(2j+ 1)
applies to j spin, Sp refers to the symplectic
symmetry group, and 0 (3) refers to the rota-
tion group. ' We use the formalism and nota-
tion of Flowers~ to describe (2) in terms of the
partition number (o) and the seniority s. In ad-
dition, we propose an irreducible representa-
tion [a'] of SU(3) applicable to a state g of se-
niority s; this representation is to be interpret-
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