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Attention has recently been called to the fact
that the traditional' number-phase "uncertain-
ty relation" connecting the excitation number
of an oscillator to the phase angle,

ANAq ~ ~, (1)

lacks precise meaning for small quantum num-
bers, since an appropriate Hermitian phase
operator cp does not exist. '&' Our purpose
here is (1) to propose a substitute for Eq. (1)
in terms of the (well-defined) operators S and

C, and (2) to evaluate the new expression for
the so-called coherent states, whose importance
has been stressed by Glauber' and Sudarshan. '
It will be shown that for large N the coherent
states are minimum-uncertainty number-phase
states as well as minimum-uncertainty posi-
tion-momentum states. Even for very small
N the uncertainty product is very small.

Ne consider a single mode of the radiation
field, described by the usual harmonic-oscilla-
tor variables a, a* obeying [a, a~]=1. The oper-
ators S and C are defined' in terms of the oper-
ators E~, whose classical analogs are exp(+i(),
g being the classical phase. Denoting the num-
ber operator Q Q by Mop we have

=(/ +1)-»~g E =go(/ /1)-»2 (2)
op + op

E Im) = Im+1).

Despite the nonunitary nature of E~, we can
define Hermitian "sine and cosine" operators'

s-=(li2i)(E -E,),
c=,'(E +E,).

From the commutation rules

[x,s]=fc,
op

(4)

[x,c]= -zs, (8)
op

one can deduce the uncertainty relations [(~)'
= (X') -(X)') ]

(~)'(~s)' - -',(c)',
(~)'(~c)' -,'(s)'.

The proposed relation, which treats the fluc-
tuations in 8 and C symmetrically, and reduces
to (1) in the appropriate limit, is deduced from
(7):

the following matrix elements in the number
basis:

(E E ) =5, (E E ) =5 -5 5 . (3)+ n~n mn' + —rnn mn m0 n0'

Here the integers m, u, denote the usual num-
ber states. The F+ are raising and lowering
operators:

The F+ are one-sided unitary, as is shown by , [(zs)'+ (zc)'] 1

[(s)'+ (c)'] 4' (8)
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The coherent states, well known in the study
of radiation emitted by a classical current
source, 'y' are defined by'

a In) = n!n};

In} =exp[-(g) tn I'] Q, „,In).
n=0

The average number N is t n t'; the states
ln} are Poisson distributed and (~)'=N. The
complex number n has magnitude N'" and its
phase corresponds to the classical phase angle. '

The foregoing equations can now be used to
give
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ln Eq. (10) the parameter p is defined by

( = (Imn)'/[(Ren)'+ (Imn)'],

and lies in the range 0 ~ ( - 1. Also,

00 n

(n IS I n} =e Imn g

(10)

(12)

FIG. 1. The uncertainty product S(P, ) =(6N) (M ) is
shown as a function of (4N)2 =N for various values of
the parameter ( defined in Eq. (11). All expectation
values refer to coherent states.

%'e have evaluated expressions entering in

Eqs. (7) and (8) for coherent states having a
wide range of mean excitation N. The cumber-
some summations were dealt with by means
of a CDC 1604 computer, and the results were
checked for large and small N by means of
the limits discussed above. Figure 1 shows
the quantity

S(P) -=(~)'(~S)'
The corresponding results for C follow by sub-
stituting 1-$ for ] in (10), (ll), and (12). [In
(12) this means Imn —Ren ].

It is interesting to note that

(n IC'+S' in) = 1—&e

which has limits ~ and 1 for N small and large,
respectively. The asymptotic expressions (for
large N)"

evaluated for coherent states with parameters
$ = 0, &, &, &, 1. Figure 2 shows explicitly
that the first uncertainty relation in Eq. (7)
is satisfied and closely approached for all N

when $
= 0 (real n) Corres. ponding results

I.O

N
n! [(n + l)(n + 2) ]'"n=0

1 3
1 + ~ ~ ~

N 2N 8N2 (14)

~

~ ~ ~~!(a+1)'" N'" 8Nn=O
(15)

are also useful. In particular, we note the re-
sult
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FIG. 2. The quantity Q(() =—S(()/(C) is shown as a
function of (AN)2=N for various $, for the coherent
states. According to Eq. (7), Q($) must be larger
than ~.



VOLUME 14, NUMBER 11 PHYSICAL REVIEW LETTERS 15 MaRCH 1965

(as)(~c) ) ~e (19)

If N ~ 1, the equality in Eq. (19) is almost
exactly satisfied, for all $. This is seen to be
in agreement with the fact that as N approaches
zero, both AS and AC go to &. For large N,
the left-hand side decreases as

ASbc-, $(1-$)+0 —i+ ~ ~ ~i'' (20)
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for the second relation in Eq. (7) follow on us-
ing the symmetry mentioned after Eq. (12}.
The maximum is 0.2922 and occurs near N =2.4.

Figure 3 shows the uncertainty product U of
Eq. (8}, which does not discriminate between
8 and C (U is independent of $). The coherent
states are seen to be nearly as classical as
permitted for all values of mean excitation.
In particular, we see that &» U» &. Brunet"
has also proposed states having a small uncer-
tainty product. It appears that his definition
of phase uncertainty relies on the classical
limit and so is only valid for large N. More-
over, the uncertainty product is larger than
that which we have found for the coherent states.
(Even more important for application is the
direct physical meaning of the coherent states. )

Finally we consider the limitation on simul-
taneous measurements of S and C. From the
commutation relation

[S,C]=(I/2f}(I-E,E ),

one finds the relation
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FIG. 3. The dependence of the uncertainty product
U %defined in Eq. (8)] on (~N)2=X is shown for the co-
herent states. Note that U is independent of (.

61"he operators S and C have a continuous eigenvalue
spectrum in the interval —1 to +1. The eigenvalue can
be labeled by sing and cosp, respectively, for S and C;
however, the sum of the squares does not equal unity
except in the limit of large N. In the classical limit
the quantity y corresponds to the classical phase angle.
Although S2+C2 is not equal to the unit operator [cf.
Eq. (13)] the quantities S and C bear such a close rela-
tion to the classical quantities that we have retained a
notation suggestive of this correspondence.
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'"Another useful form is iu) =A(o.')i0), where io) is

the ground state and A(Q) is the unitary operator
exp(Qa* —Q*a). The &(Q) give a non-Abelian ray rep-
resentation of the Abelian group of phase translations
in the variable n of the coherent states in), where n
ranges over the complex Q plane. The multiplication
law is

g(Q2)Q(Qf) = exPt 2 (Q2Qf QfQ2 )]g{Q2 + Qf) ~

P. Carruthers and M. M. Nieto (to be published) dis-
cuss the problem of the forced quantum oscillator from
this point of view.

In calculating (15) the fact that

tl(s+1) = f t e dtir(s+1)
is useful. Here z = -~.
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