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%'e propose a simple model of weak interac-
tions which allows for CP violation. ' A single
current-current coupling is introduced where
vector and axial-vector currents transform
differently under SU(3), yet each transforms
like a member of a unitary octet.

We start from Cabibbo's elegant assumption'
that the hadronic weak current —including both

A&, the axial-vector current, and V&, the vec-
tor current —transforms under SU(3) like
m+cos8+K+sin8. Then the weak current, like
the electric current, transforms like a gener-
ator of SU(3). (Models with CP violation pro-
posed by Sachs and Treiman' and by Sachs~
invoke CP-odd currents with I = ';. Such cur-
rents do not have octet transformation proper-
ties. ) Furthermore, it is usually assumed that
the weak currents are chosen from among a
single octet of vector currents (the traceless
3x 3 Hermitean matrix J&) and one of axial
vector currents (the traceless 3x3 Hermitean
matrix K&). These octets behave in a definite
and identical fashion under CP, which may be
taken to be 4 (x, t) —Z (-x, t) and K&(x, t)
-K&(-x, t), where tilcPe denotes matrix trans-
position. These are the 16 conserved currents
of a chiral SU(3) 8SU(3) symmetry which can
hold in the limit of vanishing pseudoscalar
meson masses. ' (A model with CP violation

due to Cabibbo' requires the introduction of
other octets of currents with opposite CP prop-
erties. Matrix elements of these abnormal
currents are "of the second kind'" and give rise
to observable CP violations. )

We modify the original Cabibbo proposal by
introducing neither non-octet currents nor ab-
normal octet currents. Rather, we let V& and

A& transform like different members of a uni-
tary octet. ' We assume that V& transforms
like m+cos8V+K+sin8V, and that A& transforms
like 7+et@'cos8A+K+es4 sin8A. We lose no

generality writing V& as a real linear combi-
nation of m+ and K+, since the overall phase
of the weak current and the relative phase of
its Y = 0 and Y = 1 parts are unobservable. Be-
cause nuclear P decay seems CP invariant,
we put 4' = 0; because of the success of Cabib-
bo's model in relating decay rates, 9 we put

8V =8A =8. We are left with a two-parameter
description of the weak current involving 8~ 15'
(the relative strength of the l' = 0 and Y = 1 cur-
rents) and C (the degree of CP violation, which
may or may not be small):

pe

0 cos8 sin8
V = TrJ C= TrJ 0 0 0

P Po 0 0
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0 cos0 e'@ sin8
A =TrK D=TrK 0 0 0"0 0 0

(2)

%e give a brief description of some conse-
quences of the model. A more detailed analy-
sis will be forthcoming.

Leptonic decays. —The leptonic currents are
assumed to be the usual ones, and these im-
mediate conclusions about leptonic decay modes
follow: All AY' = 0 leptonic processes (nuclear
P decay, muon capture, muon decay) conserve
CP to lowest order in weak interactions. The
Cabibbo prescription properly describes hy-
peron P-decay rates, but vector and axial-
vector matrix elements now have relative phase
C. (The study of CP violation in A P decay would
give a direct determination of 4 .) The decay
modes K~2 and KE3 conserve CP, because in
neither case is there the possibility for inter-
ference between V and A. The degree of CP
violation in K~4 depends on the relative contri-
bution of V and A to these modes. The b Y = &Q
selection rule remains exact.

Nonleptonic decays. —The interaction Lagran-
gian responsible is G(A& + V&)(A&1+ V&1).
In general, all nonleptonic decays will display
some CP violation. Recent observations" of
A -P +m are consistent with CP conservation,
but they allow the possibility of significant CP
violation. (The relative phase of S and P am-
plitudes may differ by as much as 30, after
corrections are made for final-state interac-
tions. ) Since we have not been able to express
the amount of CP violation in A decay in terms
of @, we feel that the possibility that 4 is large
is still admissible.

Although the M='; rule approximately char-
acterizes all nonleptonic decays, it is not im-
plicit in any model with only one current-cur-
rent coupling. Perturbative calculations do
not satisfy M='; and are too small by several
orders of magnitude for allowed transitions. "
A selective enhancement of the octet channel
due to the symmetric strong interactions is
often invoked. W'e assume such an enhance-
ment in the "normal" pseudoscalar and "nor-
mal" scalar octet channels. '3 The four admis-
sible spurions correspond to K,g, p K(» K(y)
and K&»' tadpoles. &

2

The parity-conserving part of the nonlepton-

ic weak interactions may be written

V V ~+A A t =(ZC)(ZC1) +(KD)(KD~)

= ——'(8 )(CC~) '(K—)—(DD t) + (JCJC1+KDKD~)

+ (J'(C, C1}+K'(D, D~]), (3)

V A ~+H.c.=(JC)(KD~)+H.c.= ~(JE)(CD~-)

+ ~(JCKDt+ JD~KC) + ~(jJ, K) (C, D~))

+,'[(gC)(KD t) —(ZD&) (KC) ]+H.c., (4)

where the first term is a unitary singlet, the
second term is mostly 27-piet, the third term
transforms like a member of an abnormal
pseudoscalar octet, '» and the last term (which
is antisymmetric in 4 and K) consists of a mix-
ture of decupletantidecuplet and normal oc-
tet ([Z, K][C,DT])+H.c. Only the normal octet
is enhanced, and it gives rise to the spurions

sin8cos8((1 -cost)(K&») —sinC(K&, P)
+ sin'8 sin4((«0) + v 3(q)).

The CP-conserving K&» spurion vanishes even
more rapidly than the CP-nonconserving K,»
spurion as 4- 0." Small 4 gives a theory in
which the K —2m amplitude is mostly CP odd,
whereas the K —3m amplitude is mostly CP
even, and yields the experimentally unaccept-
able prediction that I'(KS - 3«) = 4 T (K -I)3.«
A large violation of CP (perhaps even 4 =«/2)
is indicated.

Gell-Mann' has discussed the AY = 0 non-

where parentheses denote traces, curly brack-
ets denote anticommutators, and space-time
indices have been supressed. The first two
terms are SU(3) singlets, the next is mostly
27-piet; only the last term behaves like a mem-
ber of a normal scalar octet and is subject to
enhancement. Its two parts are independent,
and they give rise to the effective spurion

sin8 cos8((o + P cost)(K &»')+ P sinC (K&»')),

where n and P depend on the process being
considered.

Similarly, the parity-violating interaction
becomes
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leptonic wea'I' interactions that arise from a
single current-current interaction. The par-
ity-conserving part contains bJ = 0, 2 terms
multiplied by cos'8, and b,I=1 terms suppressed
by sin'8. In our model, there is no CP noncon-
servation in these terms, and they are experi-
mentally masked by electromagnetic correc-
tions. Similarly, the parity-nonconserving
terms involve bJ =0, 2, and the bI =1 terms
are again suppressed by sin'8. However, those
terms that transform like a Y =0 member of
a normal pseudoscalar octet are subject to
dynamical enhancement by a factor of -25.
From Eq. (5} it is seen that these terms are
CP odd and involve M = 0, 1. Their suppres-
sion by sin'8 is approximately compensated
by their "octet enhancement. " Following an
approach analogous to that of Hellesen and
Bjorken, '8 we find that they give rise to the
P-odd CP-odd nuclear interaction

-I0 '(3' Y-x~+,'9xv').

The K —2~ decays. —The remarkable feature
of Kp 2v which must be explained by our mod-
el is that the rate for Kl - 2m is so small
[r(KI -v++v )/r(KS v++v -)=5X10 '].
Surely, this is immediately understood if l41
«1 or l4-m j«1, i.e., if the degree of CP
nonconservation is small. [The difficulty with
small 4 discussed in the last paragraph no

longer applies for very small 4, for the sup-
pression of the K~ spurion by (I-cosC ) is
SU(3) dependent and only approximate. ] We
prefer to exploit the experimentally more in-
teresting possibility that 4 is large. %einberg"
has shown, in an idealized model (one channel,
neglecting energy dependence of CP-noncon-
serving phase), that one linear combination
of K, and K, is uncoupled to the ~+~ channel,
even if CP is strongly violated. However, Sachs'
and Sachs and Treiman' have pointed out three
exceptions to this argument, each of which
will lead to some K& —2v decays. These are,
briefly, as follows: (1) The involvement of
virtual 2n states, which may imply that the di-
agonalization of the complex decay matrix (in-
cluding mass shifts) does not give the same
eigenstates as the real part of the decay ma-
trix; (2) the breakdown of the AI='; rule —in
general the I=0 and 5=2 final states need not
have the same CP-violating phase; (3) the
existence of other real or virtual decay modes,
especially 3n. In our model, these corrections

to %einberg's argument may still leave a suf-
ficient suppression of Kl -2~ to be compat-
ible with the experimental result.

We have, in Eq. (4), decomposed the parity-
nonconserving part of the weak interactions
into an expression antisymmetric in the replace-
ment J-K, which transforms like a mixture
of normal octet and 1010*, plus a term sym-
metric in J-K which transforms like a mix-
ture of abnormal octet and 27. Two results
are easily established:

(1) In the SU(3) limit, the terms symmetric
in J-K do not contribute to Kp- 2m. This is
a simple generalization of a result of Cabibbo
and of Gell-Mann. " Realistically, this sup-
pression cannot be expected to be better than
by a factor of -„ in amplitude.

(2) The b,1' = 1 part of the symmetric terms
bears the CP-nonconserving phase (e '@+I);
while the AY =1 part of the antisymmetric
terms bears the orthogonal phase (e ~ -1).

Remembering that the normal octet is en-
hanced by a factor -25 in amplitude relative
to the leading bl =,'- terms (which arise from
the 10810*), we find that the M=-,' decay am-
plitude is dominantly characterized by the phase
e ~@-1. The M = '; term arising from the sym-
metric part of the Lagrangian has the orthog-
onal phase, but (with 4 mv/2) it is only -1/250
the strength of the dominant term. At most,
this can lead to r(KI -2v)/r(KS-2w}-10

Now consider the M=,'- amplitude coming
from the 1010* and 27. In large measure,
its phase will coincide with that of the domi-
nant M='; term. A small difference in phase
(-I'0) arises because of the suppressed contri-
bution of the 27. This may lead to a contribu-
tion to K&- 2~ of -10 ' the K~- 2m-decay rate.
(To obtain a more precise result, we must
analyze the isotopic decomposition of the 27
and 10810*terms. This is in progress. )

Finally, we consider the 3m decay modes.
Another effect of large CP nonconservation
is the appearance of an observable rate for
the s-wave three-pion decay mode of KS. %e
may relate the 2m and 3m decay modes of K~
and K& in a simple model calculation which
ignores the small effects discussed above.
Diagonalization of the 2x2 K&g) K(2) mass ma-
trix yields the short- and long-lived eigenstates,
and their complex decay rates are found to
satisfy

r(K -2v)r~(K -2v) =r(K -3v)r*(K -3v).S L, S I.

37
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We expect I'(Kg- 3w) and I'(Kl —3w) to be com-
parable in magnitude, but their ratio depends

on the unknown relative phase of the 2~ and 3m

decay amplitudes. We may use this result to
estimate the decay rate I (Kl -2x), but we must
remember that ReI'(K —3x) is expected to be
smaller than Iml (K-3x) because of the re-
stricted phase space for K —3x. [An estimate
of Iml'(K - 3x) = 4 Rei'(K - 3x) follows if a broad
2m resonance at -300 MeV is invoked. ] We ob-
tain r(K~ -2x) =10-'r{K~—2x).

Summarizing, we have found that even if 4
is large, the Kl - 2m decay rate arising from
each of the three effects discussed above is
-10 'I"(K~- 2w). We have not established this
result, but only made it plausible. Experimen-
tally, our model requires the existence of con-
siderable CP nonconservation in A P decay and

suggests observable CP nonconservation in
all nonleptonic decays. Conversely, our mod-
el requires no CP nonconservation in K~3.
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