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The first two terms in the high-density expan-
sion for the energy of a degenerate electron gas
imbedded in a uniform background of positive
charge a,re given correctly by the Hartree-Fock
theory. ' In this formulation, one neglects all
correlations except those due to the Pauli prin-
ciple, and thus the effective interaction, which
acts only between particles of parallel spin, is
purely attractive. The purpose of the present
note is to point out that for moderately high den-
sities —for which it is often assumed that the
HF theory is a convenient starting point for the
analysis of such a system —the electron gas as
described by the HF theory undergoes a phase
transition analogous to the familiar liquid-gas
transition. The density at which this occurs is
of order 1022/cc and is not related to the melt-
ing of the signer lattice' which occurs at much
lower densities. ' Further, since we assume no

polarization of the spins, this transition is not
connected with the spin-density waves studied
by Overhauser. ~ Mathematically speaking, the
phase transition occurs because, as will be
shown below, the particle density (yn, ), when
considered as a function of the chemical poten-
tial p, has a finite discontinuity for a certain
value p, o and this implies' the existence of a
first-order phase transition.

In units in which all lengths are expressed in
terms of the radius of the first Bohr orbit and
a.ll energies in Rydbergs, the single-particle
energy of an electron of momentum k is given

in the HF theory by

e(k) =k'- —, dq -, ,6(p.—e (q)),
1 1

where, for generality, we have introduced a
shielding parameter x, and where 0 is the step
function which vanishes for negative values of
its argument and is unity for positive ones.
The relationship in Eq. (1) is, of course, well
known, although customarily the 8 function which
appears under the integral is not present, but
rather the domain of integration is restricted
to be the interior of a sphere of radius ko. The
implied one-to-one relationship between the
chemical potential p and k, is always assumed
although rarely spelled out in detail. For our
purposes, we start with the "more basic" Eq. (1)
and note that it is a nonlinear integral equation
and that in general, for any given values for A.

and p. , it may have more than one solution.
Physically, this possibility of having a multi-
plicity of solutions of Eq. (1) offers no difficul-
ty; and on reflection of the meaning and the ori-
gin of this equation, one concludes that we must
select that solution for which the free energy
(equivalently, the total energy) is a minimum.
Because of this minimization criterion, it turns
out that for a certain value of p, one must switch
from one of these multiple solutions of Eq. (1)
to another, and this change induces a discon-
tinuity in n (p) at this point, and thus' we have
a phase transition.
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To solve Eq. (1) we define a quantity E(k, k, )

by the relation

E(k, ko) =k ——
~ dq - »8(ko —q),

1 1

q-k '+a'

where kp is the parameter conventionally called
the radius of Fermi sphere. On comparing
Eqs. (1) and (2), it is cleart. hat E(k, ko) will be
a solution of Eq. (1) provided that'

„E(k—, k,)&0,
8

(3)

and, in addition, that kp is determined by the
relation

E(k„k,) = g. (4)

Now it is easily confirmed by use of Eq. (2) that
the condition in Eq. (3) is always satisfied, and

Eq. (4) then tells us the value of the parameter
k, for any given value of the chemical potential

In terms of the solution as expressed in
Eqs. (2) and (4), the particle density as a func-
tion of p. becomes

"tv)= 2f&k&(u, ~(k)t= (5)

where k, is to be thought of as a function of p
according to Eq. (4).

Let us now examine the possibility that Eq. (1)
has more than one solution. First, we note that

Kp

for any negative value of p, a solution of Eq. (1)
is given by

e(k) = k2, p & 0; (6)

and according to the first equality in Eq. (5),
n(p. ) vanishes for such values of p, . The num-
ber of solutions of Eq. (1) of the form in Eq. (2)
is clearly given by the number of values of kp
which satisfy Eq. (4) for any given p. In Fig. 1

we give a plot of k, as a function of p[=E(k„ko)]
for several values of ~. For all values of k
larger than approximately 0.21, for any given
value of p. there is a unique va, lue for k, and,
according to Eq. (5), a unique density. How-

ever, for values of A. less than 0.21, it is seen
from Fig. 1 that for a certain range of values
of p there are three' values of kp which will
satisfy Eq. (4) and, correspondingly, these are
three solutions of Eq. (1). The minimization
criterion noted above tells us to select that so-
lution which minimizes the free energy I'. In
terms of the density in Eq. (5) the free energy
I' may be written

F(p. ) =-J~ n(p)dp = —, k, 'dg,
QQ 0

and evaluating this for the three possible solu-
tions enables one then to find the value of p. at
which n(p) has a discontinuity. For the case
k = 0, one finds easily in this way that for val-
ues of p &-15/16m', the correct solution cor-
responds to k, = 0, while to the right of this point
it lies on the upper curve of Fig. 1 which is giv-
en by

tt' 1
k = +

I +p.
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FIG. 1. Plot of ko as a function of p, [=E{ko kp)] for
various values of A. according to Eq. (4). For the case
A, = 0, the solution which minimizes the free energy
jumps at p =-15/16m2 from the value ko= 0 to the upper
curve, ko= (1/m)[1+ (1+pm )~ ].

Thus at the point p. = —15/16v2, the density jumps
discontinuously from the value zero to the val-
ue 125/192m', and this impliess that there is a
phase transition in the electron gas at a densi-
ty -10"/cc. In Fig. 2 we give a, plot of the val-
ues of kp at which the phase transition occurs
for various values of the shielding parameter a.
Perhaps most noteworthy, is the fact that the
phase transition disappears for values of ~
~ 0.20.

One of the questions that arises naturally in
the light of the present result is this: what is
the effect of including correlations in addition
to those produced by the Pauli principle'? For-
mulas for this correlation energy in the high-
density limit have been obtained by Gell-Mann
and Brueckner, for low densities by signer, 9
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a function of density must always have positive
curvature. And each of the above formulas has
negative curvature for some range of densities,
thus indicating at least the inapplicability of
the formula for this region of densities. Fur-
ther, the phase transition described here is
also present if one includes lowest order tem-
perature effects.
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FIG. 2. Curve depicting the value of ko at which a
phase transition occurs for various values of A, . The
associated densities are given by Eqs. (4) and (5).

and there is also an intermediate-density for-
mula given by Nozieres and Pines. " In a re-
port to be published elsewhere, it will be shown
that the presently described phase transition
is contained within all of these formulas at ap-
proximately the same density. This can be
easily confirmed by noting that since the den-
sity fluctuations an/s p, must be non-negative,
it follows that the curve for the total energy as
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Several authors' ' have suggested that the
recently discovered' ' extraterrestrial sources
of x rays may be hot neutron stars. The plausi-
bility of this suggestion, and in fact the likeli-
hood that astronomers will ever be able to ob-
serve neutron stars by their x-ray emission,
depend critically upon the cooling times of the
hot stars. The main purposes of this note are
(i) to present the results, and suggest the im-
plications, of some approximate calculations
for the neutrino cooling rates of neutron stars,
and (ii) to point out that some current ideas re-
garding the constituents of neutron stars should
be revised. Our description of the states of a
neutron star and the reactions by which it cools
differ from the work of previous authors'&'&

in that we include in an approximate way the

effects of the strong interactions among all the
hadrons (strongly interacting particles) pres-
ent. The principal new results obtained (for
densities not much greater than nuclear densi-
ties) are' (i) the existence of effective masses
for all the hadrons, (ii) differential shifts in
the threshold densities at which various kinds
of particles are produced, and (iii) much fast-
er cooling rates than previous workers have
estimated. At densities greater than 10 times
nuclear densities, unsolved matters of princi-
ple are of primary importance. " We have there-
fore attempted to phrase our initial questions
in terms of quantities that can be defined inde-
pendent of any specific model for the interac-
tion among the particles that constitute a neu-
tron star. Our practical results are, of course,
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