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estimate the Fermi energy of the observed d-
band holes to be about 0.11+0.03 eV and, if spin-
orbit coupling is neglected, this is also the Fer-
mi energy for the heavy d-band holes. The tem-
perature variation of the amplitude of the fast
period (that from the s band) at 6 = 14° gave m*/
my=2.1£0.3.

Using the observed effective masses to cal-
culate the contribution of the s band and the light
d holes to the electronic specific heat, we find
that the observed surfaces account for less than
10 % of the observed value® of 9.3 mJ deg™?
mole~!, If we neglect many-body effects, the
remainder is contributed by the heavy d holes.
These must therefore have a very high effective
mass, which makes them unobservable in the
de Haas-van Alphen effect at 1°K.

There remains the question of whether any
other d-band levels at symmetry points are
above the Fermi level. Most d-band calcula-
tions®s*® indicate that the energy separation of
X, and W,’ is very small (~0.01 eV), whereas
the other d levels are appreciably lower. Our
experiments suggest that W,’ is above the Fer-
mi level, because otherwise it is very difficult
to accommodate the 0.36 hole per atom on the
square faces of the Brillouin zone. However,
it is the galvanomagnetic data® which provide
conclusive evidence that W,’ is above the Fer-
mi level and that the d-band levels at K and L

lie below it. The heavy d-band holes then form
a surface open in [100] directions which accounts
for the observed stereogram. In addition, this
model of the Pd band structure predicts correct-
ly the sign and the approximate magnitude of

the Hall constant® for H[100], the only direction
in which geometric discompensation is observed.
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SUPERCONDUCTING SURFACE SHEATH OF A TYPE-II SUPERCONDUCTOR
BELOW THE UPPER CRITICAL FIELD H_ of
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(Received 18 January 1965)

We have calculated the order parameter of
a bulk type-II superconductor near its surface
(bounded by a vacuum) for magnetic fields par-
allel to the surface and close to the upper cri-
tical field H .9 when the Ginzburg-Landau pa-
rameter k> 1. We find that the energy gap
near the surface is larger than about 70 % of
its zero-field value for fields just below H 9.
The maximum value of the order parameter
is in general not at the surface but is field de-
pendent and occurs within approximately one
coherence length from the surface. The super-
conducting properties (order parameter, en-
ergy gap, superconducting electron concentra-
tion) of the metal near its surface do not show
any abrupt changes near H c2-

Consider a semi-infinite superconducting
half-space with the boundary surface at x =0
and vacuum for x <0. The applied magnetic
field H, is parallel to the z direction. Assume
that the Ginzburg-Landau parameter k =\/¢
> 1 (X is the penetration depth and ¢ the coher-
ence length) and also that (H.9-H)/H,9 < 1.
We know that to this approximation Abrikosov’s
normalized solution® for the magnetic field in
the bulk of the material near the transition tem-
perature is

Hp=H ~(1/201 ¥ 1, (1)

where the bulk order parameter ¥g is normal-
ized with respect to the order parameter in
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zero field, the magnetic field with respect to
V2H,, the distances with respect to A, and H,
is the bulk thermodynamic critical field.

Between the magnetic field at the boundary
surface H, and the bulk field Hg, there must
be a region in which the magnetic field goes
over continuously from H, to Hg. For a square
vortex lattice the maximum value of the order
parameter is | Vgl . 2=2V2k(k-H)/(2K*~1)
=V28(l¥gl?), where H 9=« in normalized units
and B=1.18. Therefore Hg=H for k>1 and
(K—Ho)/K <« 1. We may therefore assume to
the first approximation that for large-x mate-
rials the magnetic field near the surface of the
metal is also H,, provided (as it turns out) the
“surface layer” is smaller than the penetration
depth A.

Therefore the vector potential in the surface
layer is approximately A= (0,H,x,0) plus the
gradient of an arbitrary function of the coor-
dinates which we have equated to zero. Because
the Ginzburg-Landau® equations (on which Abri-
kosov’s solution is based) are gauge invariant,
the phase of the order parameter is then deter-
mined only to within an arbitrary function of
the coordinates. We therefore assume that near
the surface the order parameter is of the form

¥-®p(x), )

where & is as yet undetermined, and D is a func-
tion of x. With the above vector potential and
Eq. (2), the first normalized Ginzburg-Landau
equation,

(/)9 + RPw—w + 1 912 =0, @®)
reduces to
2 2
‘;153_,3+(H0x—§) D-D+|DI?D=0. (4)

We introduce the parameter p?=«/H;, which
is equal to the ratio of the upper critical field
(Ho9=k) to the applied field, and the new vari-
ables

=88, = (k/pw)x-k(L/x).
Then Eq. (4) becomes, with D=D(¢),

d2
£+[u2(1—02>—(g-;0>2]n=o. (5)

At the boundary surface the Ginzburg-Landau
boundary condition®

(ﬁd—dgmg)ww,c):o (6)
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must be satisfied. For our particular choice
of the vector potential, Eq. (6) reduces to

dD/dt =0 at £=0. (7)

The as yet undetermined constant #[= (k/u)¢,]
can be obtained in the following way. The free-
energy difference between the superconducting
state in an applied magnetic field and that of
the normal state in zero field integrated over
the total volume is®

de(FSH_F )

NO

1 H?
_ Lt g2
_de< || +2|'Il| ot

13y K\I/'z (8)

For our particular choice of ¥ and A the free-
energy difference per unit area in the yz plane
(at constant magnetic field) is

AF=B+C ” dn[(d—D>2 + {P=p2}D? +“—2D‘] (9)
(£ L \dn 27 )

where B and C are constants and D is now D(n,

¢,). By minimizing AF with respect to &,, one

obtains with the boundary condition Eq. (7),

with Eq. (5), and the condition that the slope

and the amplitude of D(Z) is zero for large val-

ues of g,

&2 = n2[1-3D%0)], (10)

where D(0)=D(£=0)+0 is the amplitude of the
order parameter at the surface of the supercon-
ductor. Equation (10) shows that the phase of
the order parameter is related to the applied
magnetic field and also to the amplitude of the
order parameter on the boundary surface be-
tween superconductor and vacuum.

Equation (5) can now be solved numerically
with the boundary condition Eq. (7) and with the
help of Eq. (10) for a given magnetic field (u?
= constant) by selecting a value of D(0) which
makes the function D(¢) for large values of ¢
(in the bulk of the metal) become very small
compared to D(0). This is obviously the cor-
rect solution for Hy = H .9 because no supercon-
ductivity exists in the bulk of the metal for mag-
netic fields at and above H.9. Below H.9 this
is justified only if

K=H

kB(1-1/2k?) (11)

DZ 2\ _
0)> (¥ B' )
In turns out that D(0) is of the order of unity,
and therefore the computed solutions of Eq. (5)
are correct within our approximations which
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are x> 1 and (k-H,)/k = (u*-1)/p? < 1.

The solutions of Eq. (5) are shown in Fig. 1
as a function of the parameter 1/u*=Hy/H 9.
At H 3 the amplitude D(0) approaches zero.
Near H g the D? term can then be neglected
with respect to unity in Eq. (5), and the mini-
mum value of p? (=maximum magnetic field)
may then be obtained from Eq. (5) with an ar-
bitrary amplitude of D() and the condition p?
=¢,2. Saint-James and de Gennes® obtained 12
=0.590, which determines H 3.

Recently Abrikosov* has calculated the mag-
netic-field dependence of the superconducting
surface sheath between H.9 and H .5 by assum-
ing a Gaussian trial function for the order pa-
rameter whose maximum value is at the bound-
ary surface. There is good agreement between
his and our results except that the maximum
order parameter is not strictly at the surface
except for magnetic fields close to H,g. Abri-
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FIG. 1. The normalized amplitude of the order
parameter D(Z) (Eq. (2)] near the surface of a type-II
superconductor for x> 1 is shown as a function of the
normalized distance ¢ = (x/£)(H/H, 2)“2 and the
parameter Ho/H,o. For Ho/H:2<1 the plotted values
are strictly correct only within the approximation
(Ho9—H()/H,9 < 1. The position of the maximum of
the order parameter is indicated by the dashed line.
For HO/Hc2> 1.2 the maximum of the order parameter
is located at the surface within the accuracy of the
plot.

kosov’s order parameters at the surface are
about 8 % larger than those shown in Fig. 1.
The order parameters of Fig. 1 stay approxi-
mately “constant” over a larger distance for
small values of & compared to a Gaussian. This
makes the superconducting sheath of Fig. 1 thick-
er compared to a sheath one obtains by assum-
ing a Gaussian order parameter. For magnet-
ic fields below H.9 the curves shown in Fig. 1
are a very good approximation for the condition
(n2-1)/u? <« 1 because the maximum order pa-
rameter in the bulk of the metal is very small
compared to that on the surface. When (u2-1)/
12 is only small compared to unity, one would
expect that a two-dimensional periodic solution
takes over in the bulk of the metal whose max-
imum value of the order parameter will still
be small compared to the maximum value near
the surface, and whose effect it will be to mod-
ulate spatially the order parameter near, but
not at, the surface. From Fig. 1 one would ex-
pect that below H .o the bulk periodic solution
will establish itself at a distance of about three
to four coherence lengths £ from the surface.
An exact calculation which describes simulta-
neously the “one-dimensional surface sheath”
and the two-dimensional solution in the bulk
for magnetic fields considerably smaller than
H .9 seems to be very complex.

From the above calculations one would expect
that experiments which test only the surface
of a superconductor will show no drastic effects
near H 9 as long as the magnetic field is ap-
plied parallel to the surface of the supercon-
ductor. This appears indeed to be the case,
if Tomasch’s profile parameter in his electron
tunneling experiments is interpreted as reflect-
ing the behavior of the energy gap near the sur-
face in a fairly direct way. With this interpre-
tation of the profile parameter it appears also
from the experimental results® that the “sur-
face sheath” does also exist in magnetic fields
small compared to H;9. Some experiments,
for example, which are likely to be affected
by the superconducting sheath below and above
H .9 are high-frequency experiments in the up-
per Gc/sec range and the near infrared, dc mea-
surements if an appreciable amount of current
is carried on the surface, electron tunneling
experiments, flux entry through the surface,
and the Kapitza resistance.

The author is indebted to R. D. Kessinger for
the numerical computation of Fig. 1, and to L. J.
Barnes, T. G. Berlincourt, R. R. Hake, A. G.
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Pression, and W. J. Tomasch for discussions
related to this work.
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EXPERIMENTAL EVIDENCE FOR PARITY IMPURITY IN A NUCLEAR GAMMA TRANSITION*

F. Boehm and E. Kankeleit
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(Received 25 January 1965)

In this communication we present a preliminary
account of an experimental investigation of par-
ity admixture in nuclear states. Our measure-
ments give evidence of a small parity admix-
ture in a nuclear gamma transition of 482 keV
in Ta'®, The size of the observed effect is in
order-of-magnitude agreement with estimates
based on the current-current hypothesis of weak
interactions,! which predicts a strangeness-
preserving nonleptonic weak coupling. Some
of our results have been presented earlier.?

A number of experiments® have been done in
the last few years with the aim of finding such
a parity admixture. With the exception of re-
cent work by Abov, Krupchitsky, and Oratov-
sky,* who have reported a parity-nonconserv-
ing term in the angular distribution of neutron-
capture gamma rays, no evidence has been found
up to now. Recently, Michel® has analyzed these
experiments and calculated the magnitude of the
effects of a parity-nonconserving force as pos-
tulated in the weak interaction scheme.

We report here on a measurement of the cir-
cular polarization of a gamma transition of
482 keV in Ta'®'. This transition has been se-
lected since it is found to be a particularly fa-
vorable candidate for finding a parity admixture.
The transition taking place between a §* and a
1% state with asymptotic numbers (402) and
(404), respectively, according to the Nilsson

scheme® has been observed to be strongly hin-
dered. The M1 part is hindered by a factor of
3x108% and the E2 part which is the dominant
(97%) decay mode is hindered by a factor of 35
compared to the Weisskopf estimate. Follow-
ing Michel’s arguments and assuming a term
of the type 5-p to cause an admixture of nega-
tive-parity states, one can estimate the size
of the E1 matrix-element and thus the size of
the E1-M1 interference. The Nilsson states
$7(503 and 303) and 1~ (503 and 303) are pre-
sumably mainly responsible for this interfer-
ence since transitions from and to these states
are classified as unhindered. The E1-M1 in-
terference gives rise to a circular polarization,
P, of the gamma ray. This polarization can be
expressed in the following way:

P=-[2/(1+¢®|FR.

The quantity ¢ is the mixing ratio between com-
peting regular multipoles of lowest order (M1
and E2 in our case), F is the ratio of the pari-
ty-nonconserving potential of the form H;,,
=G''G+p to the total (parity-conserving) nuclear
potential, and R is a quantity that depends on
the nuclear structure only.

For the case of Ta'® the quantity F has been
estimated by Michel® to be F =8x10~". The
quantity R is due to a contribution R* from the
(503) particle states and R~ from the (303) hole
states. For the former we have

p+o0(7503, §%402)M(E1,3 7503 ~37404) + (3 7503,% T404) M (E1, § *402~75‘503)’

M(M1, 5402 ~17404)

where a characterizes the amplitude of the ad-
mixture of the states from the ¢-p force. We
have, for example,

K (§750315-5137402)

5~ 5*t402) =
a(37503,37402) s

E402—E503
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A detailed calculation was recently performed
by Wahlborn® for this case with the result

P=-1.3+0.4(e,/e)x107%,

e, is the effective charge associated with the



