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lead. Preliminary experiments of deforming
the crystal, i.e., increasing the dislocation
density, show an enhancement of the amplitude
dependence for moderate deformations and a
reduction for large deformations. In the lat-
ter case, it is assumed that the dislocation
density A becomes so great that for many dis-
locations the node distance L, is smaller than
L. the impurity pinning distance. As a result,
the number of unpinning processes is drasti-
cally reduced and the amplitude dependence
becomes very weak.

So far no investigation has been made about
the nature of pinning-point imperfections. The
pinning force has to be weak in order to explain
the breakaway at such low temperatures where
the assistance by thermal phonons is almost
negligible.

A detailed experimental and theoretical ac-
count of this effect will be published soon.
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In a recent issue of this journal, Dreyfus,
Maynard, and Quattropani! have arrived at the
conclusion that under certain circumstances
it is possible for an induced long-range spin-
density distribution to exist in a nonferromag-
netic metal. This novel result is surprising
when regarded from the standpoint of the the-
ory of Ruderman and Kittel? and Yosida.® In
this theory the spin density generated at large
distances from a localized spin perturbation
is of an oscillatory nature. Dreyfus, Maynard,
and Quattropani suggest that the difference be-
tween their result and that of Ruderman and
Kittel results from the nonperturbative nature
of the problem which they treated. But we find
this explanation not completely convincing, as
the behavior of the free-electron gas in the
asymptotic region at considerable distance from
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the disturbance would nevertheless be expected
to be characteristic of an only slightly perturbed
degenerate gas, regardless of the strength of
the distant perturbation.

For this reason we have re-examined the
calculation of Dreyfus, Maynard, and Quattro-
pani,! with the goal of reconciling it with the
Ruderman-Kittel theory. In particular, we
have evaluated an additional contribution to
the total spin density which, although discussed
by Dreyfus, Maynard, and Quattropani, was
evidently not computed by them. This is the
spin density contributed by the “nonevanescing
waves.” The motivation of our calculation was
to explore the possibility that the nonevanes-
cing waves might contribute a long-range po-
larization which just cancels that coming from
the “evanescing waves” —thereby leaving only
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the expected Ruderman-Kittel spatial depen-
dence. The outcome of our investigation is
that this is precisely what happens. The pur-
pose of this note is to give a brief sketch of
the calculation and to exhibit explicitly the can-
cellation which takes place between the long-
range portions of the spin density.

We use identically the same model and nota-
tion as Dreyfus, Maynard, and Quattropani.
A semi-infinite ferromagnet is represented
by a spin-exchange field which lowers the en-
ergies of the “up”-spin electrons while leav-
ing unaffected the energies of the “down”-spin
ones, which will be henceforth disregarded.
Contact exists with a normal metal (free-elec-
tron gas) along the boundary z =0. The prob-
lem is to find how the spin density is modified
by the free passage of the polarized conduction
electrons across the boundary into the normal
region (positive z). As the boundary is taken
to be perfectly smooth, the electron momen-
tum parallel to the boundary remains a good
quantum number, and the problem can be stud-
ied in one dimension. The height of the step
potential at z =0 is taken to be such that elec-
trons of wave number « in the ferromagnetic
region can just surmount the barrier and enter
the normal region. Electrons of wave number
slightly less than o have only evanescing wave
functions in the classically forbidden normal
region, and will contribute a term to the spin
density for z > 0 of
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This one-dimensional result is easily converted
to three dimensions by multiplying by the cross-
sectional area of the Fermi sphere. This yields
the three-dimensional distribution found by
Dreyfus, Maynard, and Quattropani [their

Eq. (1],
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Unprimed quantities refer to the ferromagnet-
ic region, and primed quantities to the normal
region. Thus the numerator in Eq. (2) can equal-
ly well be written as kp’?, the square of the
Fermi wave number in the normal region.

It is now necessary to add to the contribution
of the evanescing waves the contribution to the
spin density from the freely propagating non-
evanescing waves. This can be computed by

putting impenetrable walls in both the ferromag-
netic and nonferromagnetic regions, parallel

to the boundary and at great distance from it.
Then the energy eigenfunctions are all real

and form a dense but discrete spectrum. These
standing waves contribute to the electron den-
sity a part which fluctuates rapidly as a func-
tion of energy. These fluctuations arise from
interference with the waves reflected from the
distant boundary. Averaging over the fluctua-
tions (this occurs automatically when the total
density is summed) gives the following expres-
sion, which can alternatively be derived more
directly from continuum waves in the absence
of external walls:
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The oscillating terms are exhibited below in
Eq. (5). The constant term is the equilibrium
density associated with the nonferromagnetic
electron gas, and is matched by an equal den-
sity of “down”-spin electrons. The second term,
proportional to the inverse square of the dis-
tance from the boundary, just cancels the con-
tribution of the evanescent waves [Eq. (1)].
Thus there remains no long-range effect of
the adjacent ferromagnetic gas.

The cancellation of the long-range terms
can be exhibited more exactly, without the ap-
proximations involved in Eqs. (1) and (3). This
is accomplished by rotating the contour of in-
tegration in Eq. (1) by 90°:
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Because of the functional connection % = (a?
—k’?)Y2 it is permitted to extend the limit

of integration to infinity. Addition of this form
of the evanescing-wave contribution to Eq. (3)
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gives for the total “up”-spin density
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The fact that the integral now only involves wave
numbers in excess of the Fermi value makes
it clear that the spatial dependence is entirely
of the Ruderman-Kittel type, and is a conse-
quence of the sharpness of the Fermi surface.
By appropriate integration over the above one-
dimensional formula, the density for the cor-
responding three-dimensional problem is found
to be
p(z)sz’3+ aZkF' cosZkF'z
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For completeness we also list the changes in
density of “up”-spin electrons which occur in
the ferromagnetic region for one dimension:
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Summarizing, we see that the spatial depen-
dence of the excess spin density resulting in
a nonferromagnetic electron gas from contact
with a ferromagnetic one (and vice versa) is
entirely of the Ruderman-Kittel oscillatory type.
There is no net slowly varying component. As
a matter of fact, in the limit o < szkF' when
the exchange potential is weak enough to be
treated as a perturbation, then Ruderman-Kittel
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theory yields precisely the above equations.

In this limit only one Fermi wave number en-
ters the analysis. Step potentials too large to
treat as a small perturbation in this way have
the effect of introducing distinct wave numbers
kF and kF’ into the Ruderman-Kittel formulas
without otherwise intorducing qualitative changes
in the spatial dependence. That the Ruderman-
Kittel-type results hold completely generally
for a degenerate electron gas, independently

of any specific spatial variation of the poten-
tial, can be seen by using closure.* We write
the sum over occupied states in terms of a sum
over the unoccupied states of energy eigenvalue
E greater than the Fermi value E g
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ug () is a member of a complete set of ener-
gy eigenfunctions, and 6‘® is the Dirac delta
function. Now take the difference between the
problem at hand and a reference case in which
the potential has everywhere the value it has
at point X. Then allowing X’ -~ X, we obtain
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This equation establishes that the density change
induced by spatial variations in the potential

is independent of the low-energy properties

of the energy eigenfunctions.
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‘1t is well known that for any given problem the con-
tinuum wave functions are intimately connected with
the bound-state wave functions, in several important
ways. It appears that the crucial connection in this in-
stance is that of completeness.



