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We would like to report some results of a
calculation of the properties of a laser which
shed some light on the relationships between
models which assume a pure sinusoidal output'
and those which are based on a signal with a
finite frequency width. '

We employ a fully quantum mechanical descrip-
tion of the laser in terms of correlation func-
tions of the quantized radiation and matter fields.
A generalization of the theory of thermal Green's
functions allows us to consider a system whose
equilibrium is dynamic rather than static. The
usual equations for the field propagators (e.g. ,
q(t-t')([E(rt), E(r'f')])) are supplemented by
gener alized detailed balancing conditions~ which
yield the self-consistent level occupation den-
sities and the intensities of field fluctuations.
For concreteness we consider a gaseous laser
in which the cavity is idealized by boundary
conditions and a uniformly distributed quantum
mechanical loss mechanism. We also treat
the pump quantum mechanically.

In a first calculation we assume the existence
of a sinusoidally varying mode of the electro-
magnetic field. We expand the medium polar-
ization in a power series in the field expecta-
tion value (E(rf)) and, ignoring any large field
fluctuations which might be implied, we obtain
identically the equations of Lamb, which deter-
mine the frequencies and intensities of the stable
modes in a self-consistent manner. However
the noise in the vicinity of this frequency is
infinite. We stress that this is not an acciden-
tal property of the model or of the approxima-
tion. Considerations similar to those of Gold-
stone tell us that the frequency tranform of
the field correlation function must have a 6-
function singularity at any frequency where the
system will support a true mode. e In the laser
such a singularity leads directly to an infinite
output power. This is physically inadmissible,
and we conclude that (E(rt)) is, in fact, zero.
The noise, or field fluctuation near the reso-
nant frequency, must build up as the inversion
approaches threshold for the stability of a pure
mode and must modify the inversion so that
such a threshold is not reached.

We next recalculate the laser properties,
setting (E(rt)) equal to zero but allowing for
the presence of large narrow-band field fluc-

tuations, perhaps at several frequencies. For
an inversion larger than Lamb's threshold we
find that new self-consistent solutions exist
with values of the intensities and frequencies
which differ negligibly from those obtained by
"mode theory" (the calculation with (E) not
zero). In the present approach, however, the
linewidth is determined. In the particular case
of a single traveling wave mode, and to the
order of approximation of Lamb's calculation,
the width may be expressed as
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where bf is the full width at half-maximum,
&p is the center frequency, N, and N, are, re-
spectively, the unsaturated values of the upper-
and lower-state occupation densities, b v is
the cavity half-width, and 4 is related to the
field intensity. In Lamb's notation, d =I„'R/4
This expression is half the Townes' width with
the correction N, /(N, N, ) prev-iously calculat-
ed by Shimoda. ' The last term is a saturation
effect and is small since d must be small. Gor-
don has recently found a similar expression.

The reason for the agreement of the above
calculation with that of Lamb is easy to see.
The nonlinear effects which lead to saturation
and mode interactions come from the effect
on the active atoms of the laser signal which
is described by the field fluctuation (E(rt)
&E(r't')). An intense narrow-band output is
described by a large narrow peak in the fre-
quency transform of this function (or several
such peaks for multimode operation}. Lamb,
in effect, has replaced this fluctuation by
E'costs, (t-f') (or, equivalently, its frequency
transform by 6-function peaks at +no). If the
width of the peak we find is small compared
to the natural linewidths of the atomic levels,
calculations will not distinguish between such
a peak and a 6 function. This is merely the
mathematical reflection of the fact that the time
of the atomic processes is short compared to
the resolving time for the almost monochromat-
ic electric field. Thus, in the case of a nar-
row peak, our second expression for the cor-
relation function will have the same dependence
on mode frequencies and intensities as the first
or "mode theory. " Instead of finding self-con-
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sistent modes, however, we determine values
of the operating characteristics for which self-
consistently calculated correlation functions
reproduce their assumed narrow peaks. The
self-consistent values of the intensity and "com-
plex frequency" when the imaginary part of the
frequency, the width, is small, can differ on-
ly slightly from the mode-theory intensity and
real frequency.

Although our calculation in which true modes
do not exist produces the results Lamb obtains
in "mode theory" and, in addition, gives a con-
sistent description of the fluctuations, it is de-
sirable to perform the mode calculation as a
first approximation. The formal reason is that

the Goldstone theorem which insures the cor-
rect position of the peaks of the correlation
function is not true in an expansion to any giv-
en order of perturbation theory. Higher order
terms, important only near the resonances,
must be included in any approximation to sat-
isfy it, and agree with the equivalent order cal-
culation in mode theory. The mode-theory cal-
culation provides a guide for selecting these
terms.

As a final remark we note that the absence
of a pure mode does not mean the absence of
interference effects between two separate la-
sers. The intensity correlation function' ap-
propriate to the field produced by two indepen-
dent sources is identically given by
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where E, is the field produced by the first la-
ser, and E, that produced by the second. The
superscripts refer to positive- and negative-
frequency components of the fields, and (x) is
an abbreviation of (rf). If the intensity fluctu-
ations of the individual laser outputs (the first
two pairs of terms after the equality sign above)
are small, ' the remaining term dominates.
If, further, we can consider the output of each
laser as dominantly a single spatial mode gf(r)
with a narrow frequency width 2~& centered at
&uf, the field correlation function &E; (x)Ef+(x'))
=I g *(r)g (r') exp[-i&of(t-t')-5f(t-t')]. The in-
tensity correlation function is

I,I.g, *(r)g, (r')g. '(r')g. (r)

x exp[-i(&u, -~,)(t-t')-(5, + 5,)(t-t')] plus c.c.

This is precisely the intensity correlation one
would find by performing a time average in the
case of classical waves with spatial distribu-
tions g, (r) and g, (r) and frequencies &u, and &u„
multiplied by the exponential decay term. In

particular, for plane-wave modes it is

&I(x)I(x ))-&I(x))&I(x ))

=I,I, cos[(k~-k~)(r-r')-(v, -v, )(t-f')]
x exp[-(5, + 5,)(t-t')].

%e can interpret this as a fully visible diffrac-
tion pattern at any time, with a slow random
drift of the position of any particular feature
characterized by a relaxation time (6, + 5, )
Thus, contrary to previous assertions" such
a fully visible pattern is obtainable from the
interference of two lasers even though &E) =0,
as long as the intensity fluctuations of the in-
dividual lasers are small, and is practically
observable when the linewidths are sufficient-
ly small.
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