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The existence of well-ordered higher stage
compounds (where the stage is defined as the
ratio of the number of layers of carbon to those
of the other constituent) opens the way to fur-
ther studies bearing on the possible existence
of two-dimensional superconductivity, which
might be expected by analogy with the Ising
model if it is applicable in the present case.
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Recently, Stephen and Suhl' have proposed
a time-dependent form of the Landau-Ginsburg
theory. In this note it is shown that this gives
rise to an inertial mass per unit length of flux
line. The resulting acceleration term may be
compared with the damping term suggested
by Strnad, Hempstead, and Kim, ' and investi-
gated by Bardeen and Stephen, ' the result in-
dicates that the relaxation time of a fluxoid is
less than 10 ' seconds. This suggests that
collective modes of a fluxoid system wil. l be
very difficult to observe.

For an order-of-magnitude estimate we ne-
glect all normal fluid effects, yet assume that
the gap is small enough so that the linear form
of the theory of reference 1 may be used. In
a notation in which the gradient term in the
Landau-Ginsburg equation for the order param-
eter 4 is written (I/O )[8m'V (2ie/c)A]'4 w-here
4 has the dimensions (volume) v2, the equa-
tions of reference 1 may be derived from a
Lagrangian 2 = f LdtdV, where

1 8 2 g2I.=I - — -, 8—+2iecp 4 +-
4m~' et 8m

provided electromagnetic propagation effects

are ignored. In Eq. (1) F is the usual free-en-
ergy expression in equilibrium form, includ-
ing the magnetic energy density H'/8m; v is
the Fermi velocity vF divided by v 3; and the
fields are H = v XA and E = -(I/c)(8A/st)

Since the shielding distance in the metal is
small compared with all other lengths in the
problem, the charge on the moving line, pro-
portional to cp+ (I/c)(&W/&t) to the first order
in the potentials, will be nearly zero. Here
S' is proportional to the phase of the order pa-
ra.meter:

2ieW/hc = arg4.

The time-derivative term in Eq. (1) is then
simply (5/4mv')(8 I 4't /Bt)'. The variational
problem 5Z = 0 may now be parametrized as
follows: Considering first the motion of a set
of parallel or antiparallel fluxoids relative to
each other, one substitutes the Abrikosov equi-
librium form 4 of the solution for 4 and A,
but allows the centers r of the fluxoids to be
functions of time. The last two terms in the
Lagrangian L then transform into bilinear func-
tions of the velocities r~. If the fluxoids are
well separated, by more than the coherence
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lengths, the "core" term (I'/4mv')f (814'( j
at)'d V transforms into a sum of squares of the
velocities. The electromagnetic term (1/8w)
x JE'dV, on the other hand, gives a complicated
bilinear form with position-dependent coeffi-
cients unless the fluxoids are separated by more
than a penetration length. We will only deal
with such mell-separated fluxoids, arguing later
that inertial effects from overlap are most prob-
ably smaller. The problem is now reduced to
a calculation of the mass of one single flux line,
located at r, (t)

The core kinetic energy is, per unit length,

, I (r, Vf)'dxdy =,—
l

—
l rdrr, ',

4mv' J ' 4mv' i sr

(see Abrikosov ). Here 3 is the penetration
length. Since K,(x)-1/x for small x, this would

lead to an infinite result for the kinetic ener-
gy. Hence a closer examination of the region
&A. is needed. We do this first for the case of
extreme low temperatures, neglecting the Ca-
roli-de Gennes-Matricon excitations' (see com-
ments below), when Poisson's equation becomes

V'q = (q+ W/c)/X ',

where Xd is a shielding length, of order a few
times (kF) '. In polar coordinates, with W(r')
= Kc8'/2e, it is readily seen that the solution
of this equation is

where f = I 4(r-r, ) I /4 Abrikosov' has shown
that f varies initially linearly, attaining its
terminal value unity at a distance of order f,
the coherence length, from the center of the
line. As a crude approximation we write f=r/
$, r & 1, and f = 1, r & 1. Then we find for the
mass per unit length

=wh'4 '/4mv',
core

or, since 4 '=(m m/)($' H/eK )2where He is
the bulk critical field,

= m (('H '/4m v ).core c

At low temPeratures He' —4wh2n0/ef, where
~ is the energy gap, so that finally

(2)

jl m (5/t )
12m)'n,

core 8 f
where n, is the electron concentration. With
n, -10'~ cm ', $-10 6 cm, b/e -10, this
gives approximately 4000 electron masses per
unit length of line.

To calculate the electromagnetic mass p.em,
we note that for zero charge on the line, F- may
be written

Il —-lK
l

—
l

r sin8,
I'r 5 (r)

1 (X ) 0 (X j 0

where 8 is the angle between the direction of
motion and F =x-~,. When F»A.y, this goes
over into

8 1.
y = ——=r' sin8

2e F

(compare with reference 3, where this result
is written v ~ v&). But this is also SW/St-,

as is most easily seen by writing 8' is the form
kc/2e tan '(y-y, )/(x-x, ). Therefore, (I/c)
x (SA/St)+ Vip is the same as (I/c)(S/St)(&-VW)
(i.e. , the London acceleration) down to distances
of several A&. This sets the lower cutoff for
the seemingly divergent integral. At smaller
values still, A becomes small and can be ne-
glected by comparison with V'p, which remains
finite. That A becomes small follows from the
Abrikosov solution

1 1. 1 2"'XH /r)
C—A = —(A-VW)+ —VW= - KJ —l+-

c c c tcc '(X j 2er'

and since v2X'He/K = Kc/2e, we obtain

E = ———(A-VW)
1 8

c Bt
for small r/X.

The bulk of the electromagnetic kinetic en-
ergy thus comes from the region &A~, and in
calculating it, K, (r/A) may be replaced by A/r.
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7hus, per unit length, we have

—
J E'dxdy =, ~J I( ) )3 )I

rdrd8

x'H '
p 1

~ 2l

mass dominates. Finally, if we assume that
the localized excitations of reference 5 (whose
range is essentially $) reduce all of the super-
fluid component to zero within a radius $, then

Xd must be replaced by $, and so

(5)

Hence

and, from (2),

(2H '(X)'
= Sc' E~ /

'
d

1)H tX)
"em=4 c' (X„] '

(3)

and for moderate ~, gem& /core. Assuming
the most favorable case, i.e. , extremely low
temperatures, and neglect of the excitations
of reference 5, we may compute the relaxation
time 7= gem/q of a fluxoid, where g is the vis-
cous coefficient of references 2 and 3:

q- vk'o /4e'(',

so that, with gH /e =)f/2eX, we get

1 fA) 1
em

3m' (P. J v

for ~/~d-10', vF/c-10-'.
So far, we have written Poisson's equation

in the extreme low-temperature limit, in fact
so low that & Ad/(»kT, which allows all of
the fluid down to Xd to be superfluid. More
realistically, we would have to solve (see ref-
erence 1)

p IV~
%my =

I q +p+p c&

where p~ and p„are the superfluid and normal
densities. Then p, em would have to be reduced
by some average of ps/(ps+pal). ps depends
exponentially on &I oc/aklT. Therefore, if,
as a crude guess, we assume that all the fluid
is normal wherever the local gap is less than
AT and superfluid where it is greater, the ef-
fect will be to replace the lower limit Ad by

th, where

= gkT/6

so that, with )A=X/8,

1(v ) (A) fn

p„„3(c3 PJ (kTJ

fv

=3"(—.
P~ ',kT"]~

for kT&4~)d/$, so that near Tc, the core

in the extreme low-temperature limit. For
e- 1, o- 10" sec ', X/zd =10S, this gives about
10 "second and diminishes rapidly with in-
creasing ~, as well as with increasing temper-
ature. (It has been assumed that the Caroli,
de Gennes, and Matricon' low-lying excitations
near the center of a flux line are responsible
for essentially normal conductivity of the core.
Any reactive effect of these excitations on the
mass of the line is neglected in this paper. )

Finally, the forces on the lines are obtained
by varying F in Eq. (1) with respect to the flux
positions. In the present approximation, no
Magnus force appears', however, in the pres-
ence of a uniform transport current J, a Lo-
rentz force independent of fluxoid velocity does
occur. For in that case, we must write

2F
H H, ——(rxJ),

fluxoid c

and so the F in Eq. (1) acquires a cross term

dVH . (r-r ) ~ —(rxg).
1 2r

4m fluxoid 0 c

Varying this with respect to ~, gives the Lo-
rentz force of reference 3. The current 4 on-
ly adds a time-independent phase to R', and
so the rest of the calculation is unchanged.

These results can be used to discuss the os-
cillations of a fluxoid along its own length.
However, in view of the extremely short re-
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laxation time, these do not have wavelike char-
acter. Finally, we remark that kinetic-ener-
gy effects arising from overlap terms in F.'
for several fluxoids are not likely to exceed
the ones discussed here, since the coefficients
of i', ' will contain rapidly diminishing Bessel
functions of the distance between the lines.

The author gratefully aeknomledges discus-
sions with M. Stephen and N. R. %erthamer,
and wishes to thank the authors of references
2 and 3 for an opportunity to see their manu-
scripts prior to publication.
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In this note me report the observation of flu-
orescence due to recombination of electrons
and holes in anthracene single crystals. High
concentrations of carriers were obtained by
using injecting electrodes. The crystals used
were 1 to 5 mm in thickness and 1 cm in diam-
eter, They were melt-grown from chromato-
graphed and repeatedly zone-refined material.
Glass tubes cemented to the crystal surface
contained the liquid electrodes. The contact
areas were 0.2 cm', and the direction of cur-
rent was perpendicular to the ab plane.

It is known that steady-state space-charge-
limited (SCL) hole currents can be injected
into anthracene. ' ' Most of the space charge
is trapped, the traps being distributed more
or less exponentially in depth. In previous
work a, concentrated solution of KI+I, in wa-
ter4 was often used for hole injection. We found
that this electrode was Ohmic only up to 3 x10 '
A. We could obtain a saturation current of 3
@10 ' A and higher by use of a solution of pos-
itive anthracene ions (prepared by adding A1C1,
to a solution of anthracene in nitromethane').
Aqueous Na 804 solution served as the opposite
noninjecting electrode.

Injection of electrons into anthracene has
hitherto not been observed. Using a solution
of negative anthracene ions (prepared by inter-
acting metallic sodium with a solution of an-
thracene in tetrahydrofurane), we could inject
steady-state electron currents up to 10 ' A

without observing saturation effects. The fol-
lowing observations indicated that these cur-

rents were SCL: (1) At low voltages the de-
pendence of current on voltage is greater than
a second power, as is generally found with
SCL hole currents. (2) These low currents
can be increased by light, the wavelength de-
pendence of the response being completely
analogous to that of SCL hole currents. '&' Be-
sides a response in the singlet absorption re-
gion, we observed four triplet absorption max-
ima and two weak maxima in the near infra-
red. (3) At high voltages the current is pro-
portional to the square of the voltage and much
larger than the SCL hole current measured
on the same crystal. Apparently the trap-filled
limit is reached. Using Child's law, electron
mobilities of 0.36 and 0.44 cm~ V ' sec ' (& ab
plane, taking e =3.4) for two different crystals
were calculated. '

Two-carrier SCL currents were obtained
when the electron-injecting electrode was com-
bined with a hole-injecting electrode. At low
voltages these currents were considerably
larger than those with only one injecting elec-
trode. At high voltages the currents were much
larger than the SCL hole currents but only by
a factor of three larger than the SCL electron
currents. The flow of doubly injected current
is accompanied by the emission of blue light,
observed from the side of the crystal between
the opaque electrodes. No light could be seen
with only one injecting contact. The emitted
light was analyzed with a monochromator and
shown to be the fluorescence spectrum of an-
thracene modified on the short-wavelength
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