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and hence does not represent a real decrease
in the nuclear susceptibility of the He'. %'e

therefore conclude that there is no transition
to a. superfluid state in He' above 3.5 mdeg.
With a low-temperature limit of about 4 mdeg,
this conclusion is supported by measurements
of heat capacity and spin-lattice relaxation
time which will be reported elsewhere.

The above results lead us to believe that
the heat-capacity anomaly reported by Pesh-
kov is not a property of bulk He~. A further
discussion will be given in a paper to be sub-
mitted shortly for publication.
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In the past few years significant progress
has been made toward the stabilization of plas-
mas against hydromagnetic disturbances by
using suitable magnetic configurations. " This
progress has made more urgent the conquest
of a second broad class of instabilities which
limit densities and containment times in fusion
experiments; viz. , microinstabilities.

It has been known for some time that in an
infinite homogeneous plasma in a uniform mag-
netic field electrostatic waves may be unstable
if the velocity distribution function is sufficient-
ly anisotropic. The criteria. for this instabil-
ity have been examined in considerable detail. ' '
Recently, Rosenbluth and Post' have shown that
distribution functions of the form f(vz, ~ t~) which
vanish for vz-0 can be unstable (e~ and ~

~~
are

the components of velocity perpendicular and
parallel to the magnetic field). Because distri-
butions of this form are a natural consequence
of mirror confinement and of loss mechanisms
such as charge-exchange reactions, these in-
stabilities may be quite serious in fusion ex-

periments. However, in the approximate dis-
persion relation of Rosenbluth and Post, only
those waves for which k

~~
v 0 are unstable (k

~~

is the component of the wave-propagation vec-
tor parallel to the magnetic field). There is
reason to believe that these waves will be strong-
ly damped in the region of the mirrors where
the plasma density falls to zero. Thus the pes-
simistic predictions made for an infinite homo-
geneous plasma may not prove correct for lab-
oratory plasmas of finite size.

It is the purpose of this note to point out that
if some of the approximations made by Rosen-
bluth and Post are not made, then unstable waves
with A

t~

= 0 can exist. Such waves do not prop-
agate toward the mirrors and therefore are
not damped either by the effect of the density
gradient noted above or by Landau damping from
cold electrons moving along the magnetic field.
The limit imposed by finite machine length,
as described by Hall, Heckrotte, and Kammash,
may not be applicable in this case. We also
show that if the distribution of perpendicular
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speeds is sufficiently broad, then the plasma
is stable against these 0

ii
= 0 waves. A note-

worthy feature of this instability is that it may
occur with zero frequency.

Our starting point is the dispersion relation
of reference 3 with A

ii
=0. We include only the

contribution of a single species (ions or elec-
trons), since here the interaction between spe-
cies is not important:

where

) D (k)= Y((u, k),
P n=- c

(kv)1 Bf
D (k) = i~d'~ ~ 'I

n J n (&u jv Bv
c

(2)

~c is the gyrofrequency, ~p, is the plasma fre-
quency, and Jz is the Bessel function of order
n. This dispersion relation with f0(vz, v~~) giv-
en by

f (v, v ) = (I/2' )5(v -a )5(v )0 i' il ~ i ~ ii
(3)

was first studied by Malmfors' who found an

instability. Subsequently, Gross found an er-
ror in Malmfors's work and conjectured that
no instability existed. Sen" analyzed the dis-
persion relation numerically and found unsta-
ble growth. One of us (E.G.H)s claimed to have
shown that instabilities existed if 5 =kzvj/roc
&1.8, but, in fact, this was incorrect; the num-
ber should have been 2.4.

It is fairly easy to see that an approximate
condition for instability in the frequency range
n & v/vc & n + 1 is that D~ & 0 while D„ I& 0.
The frequency range -1«u/~c &+I is somewhat
special. For such frequencies the condition
is D, &0 while D, &0. Moreover, the symme-
try properties of the dispersion relation are
such that the real part of co is zero. We shall
refer to this unstable wave as the zero-frequen-
cy mode. If f, is given by Eq. (3), then the con-
ditions, D, &0 while D, &0, for instability of
the zero frequency mode require that b(= kzvz/

) lie in the following bands: 2.40 & b & 3.83,
or 5.52» b- 7.02, or 8.65- b~ 10.17, etc. If,
in addition,

density threshold for instability given by v~
&4.13~ . Additional unstable ranges of b ex-

C
ist which will sustain growing modes with high-
er frequencies. Thus, in order that a wave

with frequency n &a, /r c &n+ 1 be unstable, it
is necessary that j„~&0 &j„+1 ~, where

7j„~is the mth zero of J~. The density thresh-
old in such cases may be as low as up=2. 7+c.

Now the distribution given by Eq. (3) is very
special. Moreover, it is known that a plasma
in thermal equilibrium is stable with respect
to kii = 0 waves; and in fact, it can be demon-
strated that any two-temperature Maxwellian
distribution is also stable against such distur-
bances. Thus, we should like to know how much

spread in»z is required for stability. To that
end we have investigated the class of distribu-
tion functions

E (z! ) = dv f (v, v )
(I)

0 x 11 0 j '
li

I ~v ~2y

exp(-v '/a '), (4)
ma g' (a

with j = 1,2, 3, ~ ~ ~ . These distributions are
peaked at (vz) =j"'az and have half-widths which
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then the plasma is unstable. This leads to a

FIG. 1. Threshold value of ~p/cu versus the relative
half-width of the distribution function, 6v&/(v&), for
the zero-frequency mode. Point labels are j values for
the distributions given by Eq. (4).
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are approximated by 6v~ =n&/(4&)"'. They are
obtained by successive differentiations of I', ' '

= (1/xnan') exp(-vz'/nz') with respect to n~'.
Thus, the integration of Eq. (2) is readily per-
formed. We find the following: (1) For j=0,
1, 2, the distributions are stable with respect
to k~~ =0 waves. (2) For distributions with j =3,
4, 5, ~, the zero-frequency mode is unstable.
The dependence of threshold density on rela-
tive half-width is shown in Fig. 1. Those waves
are unstable whose propagation vectors fall
in the band 2.5~kpg&3. 8, where pg is the gy-
roradius corresponding to the peak value of
v~. (3) The j=6, 7, ~ ~ distributions sustain
a growing wave whose real component of fre-
quency is =1.2~&, with density threshold giv-
en by &uj, = 10&ac and 3.8& kp&~ 5.0. (4) As j in-
creases, the results go over smoothly to those
obtained with the distribution of Eq. (3). That
is, higher frequency modes appear for thresh-
old densities and bands of k which tend smooth-
ly to those given by the distribution function
of Eq. (3). We have observed unstable growth
rates, dependent upon the density excess above
the threshold value, which are typically some
tenths of the gyrofrequency for excesses of the
order of 10%% of the threshold value.

The point to be emphasized here is that 0
tt

=0 modes can be stabilized by a moderate amount

of broadening and smoothing of an initially sharp-
ly peaked distribution. The absence of parti-
cles with small v&' does not have to be elim-
inated completely.

We wish to thank T. K. Fowler and Y. Shima
for many illuminating discussions of this sub-
ject.
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The nuclear magnetic properties of crystal-
line 'He have been studied extensively in recent
years. ' In particular, there have been many
experimental' ' and theoretical" ~~ investiga-
tions aimed at obtaining an accurate value of
the exchange integral J. All calculations of
J have taken the effects of pair correlations
into account. Bernardes and Primakoff ' in-
cluded them in a phenomenological way, where-
as Saunders" derived an approximate differen-
tial equation for the correlation function. Re-
cently Garwin and Landesman" have calculated
J by means of an extension of Saunders's work.

The purpose of this note is to extend recent

calculations of the ground-state energy E,""
to include the effects of exchange. The cluster
expansion of F.o used previously is generalized
so that properly symmetrized wave functions
may be treated. With an antisymmetrized ver-
sion of the Jastrow-type wave function used
previously, an expression is obtained for J
which takes the effect of pair correlations into
account in a systematic way. Calculations of
J as a function of the nearest-neighbor distance
are presented for both the bcc and hcp struc-
tures of crystalline 'He. The effects of the
pair correlations on J are analyzed.

The cluster development of the energy can
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