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Table I. Rayleigh-to-Raman cross-section ratios
and absolute Raman cross sections from benzene
at 6328 A. 6 v = wave number displacement, 60 = ab-
solute Rayleigh cross section, 6g= absolute Raman
cross section.

20@. We are presently improving the appara-
tus for extensive measurements on other molec-
ular liquids.

bv
(cm ~)

10 6g
{cm2)

992
1583-1606
3049-3062

220
1980
250

0.56
0.062
0.50

Together with the present measurements this
allows for precise calculation of both Raman-
to Rayleigh cross-section ratios and absolute
Raman cross sections. Results are summa-
rized in Table I for the aforementioned benzene
Raman frequencies; the values of the total
cross sections carry an uncertainty of about
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This Letter presents a calculation which sup-
ports the conjecture that negative ions in liquid
helium II are self-trapped electrons. '& The
mechanism responsible for this trapping is
the electron-helium interaction produced by
the requirement that the electron wave func-
tion be orthogonal to the 1s core states of a
helium atom and modified by the long-range
attraction due to polarization. A self-trapped
electron occupies a cavity or bubble whose sur-
face is a shell of polarized helium atoms. To
test the validity of this model one must know
how effectively an electron repels helium from
a volume in the liquid. A measure of this abil-
ity is the energy of repulsion between electrons
and helium atoms which is calculated here.

To investigate the properties of such an elec-
tron moving in liquid helium, the model of an
electron propagating in a periodic lattice is
used for calculation from first principles. In
replacing the liquid structure by a solid struc-
ture, one hopes to estimate the behavior of
an electron in a dense fluid. Only for certain
energies will an electron be able to move through
this periodic array without attenuation. The low-
est energy satisfying this condition will be the

(v'+k')p(r) =4sl+5(r-a) — [[r-a(g(r) j, (1)8ir-a ta

where l is the scattering length. Now write

it(r) =+M~ (2)

where the b are 2w times the reciprocal lattice
vectors generated by the lattice a. Thus,

2 ~br

b

where b, is the volume of the unit cell of the
lattice a. An integral representation for the

kinetic energy required for an electron to pene-
trate into liquid helium. Such an energy bar-
rier has been found experimentally by Sommer. '

The wave equation is written down for the
scattering of a particle of energy A' by a lattice
of Fermi pseudopotentials~ representing the
electron-helium interaction (units of 5= 1, 2m
= 1 are used). Only the S-wave, low-energy
term of the pseudopotential is retained:
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Fourier coefficients is introduced: 1,"
[(k'-b')t]dt+ exp[(k'-b') 8]

b2-k2 P b2-k2
Qp

and an Ewald' transformation is performed yielding sums which are rapidly convergent.
Thus,

(4)

16m t
t

-3/2 xr tr-all ~(-k ) I ~ 2
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it) rt
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b

where
2

erfc(x) =1-erf(x) =1— „, ' e du.

The application of the boundary condition at
the surface of the hard cores yields an algebra-
ic equation for k'.

If the wave function is generalized to a Bloch
wave function with nonzero wave vector, the
same analysis is performed and the reciprocal
mass tensor is calculated. Thus k' and m~

are obtained as a function of the number densi-
ty n of liquid helium.

For this model to be effective in calculating
the properties of an electron in liquid helium,
the ground-state energy should not depend too
strongly on the particular lattice selected.
To date, calculations have been performed
on the sc, bcc, and fcc lattices with the hcp
and diamond structures to be done in the future.
The values of k' for l =1.46ap and liquid-helium
density for the sc, bcc, and fcc cases are 1.71,
1.76, and 1.77 eV, respectively. Thus k' is
fairly insensitive to lattice structure which
confirms the expectation that a lattice model
would be a good replacement for a liquid.

The results of this calculation are illustrated
in Fig. 1 by a plot of k'/n/ versus n'"t as sug-
gested by Huang and Yang. '

Calculations have also been done using two
values of the scattering length: (1) Moisei-
witch' s' value of 1.46a„which includes exchange,
and (2) a value of 1.13ao which is obtained by
using the results of O' Malley, Spruch, and Ro-
senberg' to correct Moiseiwitch's value for

the effect of polarization as follows:
O' Malley, Spruch, and Rosenberg define a

short-range potential

t V(r) V(r)=+ (k'/2u) P'/r',

where P2 = a/ao, n = atomic polarizability, ao
= Bohr radius, and p = mass of incident parti-
cle, and solve

d L(L+1) it 2p.
dr r' r'———~V(r)+k' u(r) =O

subject to the boundary conditions

u(0) =0, u(r) = v (r)+Bv (r),
ps pc'

where vga(r) and vpc(r) are the polarization-
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FIG. 1. Ground-state energy of an electron in a
lattice as a function of number density and scattering
length.
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potentia, l analogs of the usual free solutions

j I (kr) and n&(kr) of scattering theory. But
if the short-range potential is the pseudopoten-
tial 4wla(r)(a/ar)(r ), this is equivalent to the
boundary condition u(l) =0, and thus one may
replace Eq. (6) by

+ —,+k' u(r) =0,f.(f, + l) P'
r'

~\ '

subject to u(l) =0 and

u(r) = v (r)+Bv (r).
)O' P

For the case A'=0,

v (r)+Bv (r) =j (P/r)-B n (P/r).
ps pc

Thus equation (5.6) of reference 8 defining the
scattering length A which includes the effect
of polarization in terms of the S-wave phase
shift ri(0),

lim [tauri(0)/k) =—-A = P/Bo,
k-0

leads to

n, ( pll)
(8)j.(p/f)

'

Using the value of 0.203 A' for the atomic polar-
izability of helium' in P = (o,/a, )'", one finds
A =1.13a,. Thus the scattering length of 1.13a,
which includes the polarization effect agrees
with O' Malley" and LaBahn and Callaway. "

At liquid helium densities, and for a simple
cubic lattice l =1.46ao yields k' = 1.71 eV and
l = 1.13ao yields 0 = 1.09 eV. These values are
to be compared with Sommer's' experimental
value of 1.3 eV which may be in error by 30o/~.

This large potential barrier thus appears to
rule out the model of an essentially free elec-
tron. " The process of thermalization whereby

electrons with this large energy slow down to
bubbles with energies of about 0.2 eV is not
understood. As Fig. 1 suggests, low-density
regions in helium are associated with low en-
ergies for the electron. Since helium is a
liquid, there are density fluctuations and the
electron will prefer a site of low density. Pre-
sumably, the extra energy of the electron will
be radiated away as phonons as it disturbs the
liquid helium in its pursuit of thermalization.
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