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ever, v~c and (1/q)a~~ rather than v~~ and a& them-
selves would form a U(6)U(6) algebra [R. P. Feyn-
man, M. Gell-Mann, and G. Zweig, Phys. Rev. Letters
13, 678 {1964); K. Bardakci, J. M. Cornwall, P. G. O.
Freund, and B. W. Lee, Phys. Rev. Letters 13, 698
(1964}), so that we chose g = 1.

It may also be interesting to note that in M(12) the
7t
—p+T decay amplitude f and the p

—e +e ampli-
tude yp are related by yp=mfz, giving a reasonable
p=e++e decay rate (which depends on m2).

Our extrapolation procedure (1+i /2Mm —1+m/2M}
corresponds to model (2) of reference 3, where p&
=2M' /m rather than p,&=1+2M'/m~. In the context of
the less successful model (1) of reference 3 {pole dom-
inance of Pauli and Dirac form factors), universality
would take the form (5) and relation (1) would not ob-
tain.

P. G. O. Freund and Y. Nambu, Phys. Letters 12,
248 (1964).

In view of the large width of the axial-vector mesons
it may be more adequate to treat them as particles
with a spectral mass distribution rather than having
a given mass (6 function as spectral function). It is
not difficult to see that our arguments can be repro-
duced also in such a treatment, whereas the condition
(16) would be replaced by a condition on the spectral
function describing the 1+ meson. It is also good to
remember that the B meson, if its J+= 1+, would be
an abnormal axial-vector meson and therefore could
not belong to the supermultiplet considered here. It
probably belongs to 405 or 189, in which case its

small width (I'~«1 BeV) can be accounted for.
L. M. Brown and P. Singer, Phys. Rev. 133, B812

(1964); F. Crawford, Jr. , L. Lloyd, L. Price, and
E. Fowler, Phys. Rev. Letters 11, 564 (1963); M. Fer-
ro-Luzzi, R. George, Y. Goldschmidt-Clermont,
V. Henri, B. Jongjeans, D. Leith, G. Lynch, F. Muller,
and J. Perreau, Phys. Letters 12, 255 (1964); L. Du-
rand, III, and Y. T. Chiu, Phys. Rev. Letters 14, 329
(1965).
i~T. K. Kuo and T. Yao, Phys. Rev. Letters 13, 415

(1964); M. Beg and V. Singh, Phys. Rev. Letters 13,
418 (1964).

12N. N. Bogoliubov, N. Van Hieu, D. Stoianov, B. Stru-
minsky, A. Tarkhelidze, and V. Shelest, to be pub-
lished.

It should be pointed out that the treatment of quarks
in the paper of Bogoliubov et al. and in the present
paper differ. In their paper they consider quarks
obeying a Klein-Gordon rather than a Dirac equation.
Whereas such an approach preserves M(12) invariance,
it also runs into trouble with the requirement of defi-
nite metric in Hilbert space unless the quarks obey
para-Fermi statistics I.see O. %. Greenberg, Phys.
Rev. Letters 13, 598 (1964)] rather than Fermi statis-
tics. In the approach of Bogoliubov et al. , universality
does not extend to quarks. For triality-zero hadrons
(baryons, mesons) our arguments are independent of
whether universality does or does not extend to quarks
so that a compatibility requirement for the two ap-
proaches is fair in this case. Our mass formula there-
fore applies only for triality-zero hadrons.
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Recent measurements'&' of the pion-proton
total cross section between 2.1 and 5.5 BeV/c
have revealed four new resonances, two in
each of the isospin states. In this paper we
propose a method of determining the spins of
the isospin- ~3 resonances.

The behavior of the differential wN elastic-
scattering cross section near a resonant en-
ergy can indicate the spin of the resonance if
the background amplitude with which the reso-
nance amplitude interferes is known. However,
this method of finding the resonance spin is
experimentally feasible only when the magni-
tude of the background amplitude is not much
larger than the magnitude of the resonance
amplitude. For high-energy mN scattering the
background amplitude is too large in the for-

ward (c.m. ) hemisphere, but the situation may
be favorable in the backward hemisphere.

The existing data'~ for m+p elastic scatter-
ing above 2 Bevic show that the differential
cross section reaches a very sharp peak at
cos8 = -1 (8 is the c.m. scattering angle). This
suggests that the scattering amplitude for cos8
&0 is dominated by a baryon exchange. The
exchange of an isospin--, ' baryon (N) contrib-
utes to m++p-m++p, but not to w +p —m +p,
while the exchange of an isospin-& baryon (N~)
contributes to both. Since the cross section
at cos 0 = -1 for m +p -~ +p is approximate-
ly ~ of that for m++p-m++p, and since the
N* exchange amplitude in m +p-w +p is at-
tenuated by a factor of 3 for m++p —m++ p be-
cause of the isospin coupling, it is plausible

10S1



VOLUME 14, NUMBER 26 PHYSI CAI. REVIEW I.KYTERS 28 JUNE 1965

to assume that the backward m+P amplitude
is primarily due to X exchange. %e further
assume that the amplitude due to the exchange
of higher mass isospin-2 baryon systems is
negligible compared to the nucleon. %e cor-
rect the nucleon-exchange amplitude for ini-
tial- and final-state absorption. %'ith these
assumptions, we will adjust the undetermined
mNN vertex form factor so that the model agrees
with the existing data at 4 Bev/c. '~~ Near a res-
onant energy, we will add the resonance am-
plitude to the N-exchange amplitude and exhib-
it the interference as a function of the spin of
the resonance.

The one-nucleon-exchange m+P amplitude is

A =(M/4wE)N(p, s )v2g F(t')y (f M+ie)-

x v 2goF (t')y, u (p„s,),
where P, and s, (P, and s, ) are the momentum
and spin-polarization four-vectors of the in-
coming (outgoing) proton, t is the four-momen-
tum of the exchanged nucleon, M is the nucle-
on mass, E is the total c.m. energy, F(f') is
the vertex form factor [F(M') = 1], and g, is
the md% coupling constant (g, '/4m= 14). The
spin-flip part of A~ is negligible compared to
the spin-nonf lip part. In Eq. (1), therefore,
we choose s, and s, to correspond to spin-non-
flip scattering, and no nucleon spin sum is per-
formed. (Both helicity states for the incoming
proton yield the same spin-nonf lip AiV;) We
take into account absorption in the initial and
final states' by suppressing each partial wave
in ANby qf, where qf =exp( 26f) a-nd 6I is the
imaginary part of the lth partial wave w+P phase
shift. To determine the q~'s we assumed the
scattering amplitude

the final amplitude is

A ' =Q A rl P (cos8).
2l+ 1

l
2 N'l /

(4)

An important result of the calculation is that
A~' is real and negative for all 8.

For the function F(f'), we used the form sug-
gested by Ferrari and Selleri, e
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The differential cross section at 4 Bev/c cor-
responding to the amplitude A@', using D =0.14
and a =340 MeV in Eq. (5), is shown in Fig. 1

along with the existing experimental data. The
values of the parameters in the form factor
are very reasonable. The experimental point
at cose =-0.89 represents the average cross
section from cos8= -0.79 to cos8= -1.0. The
average of the theoretical curve over this in-
terval is in agreement with the experimental
result. No attempt was made to fit the data
with precision, since the results we obtain

(I-q )P (cos8)
2l + 1l" 20—

exp [-AlP (1-cos8)].
tot

4w
(2)

IO—

In Eg. (2), lr is the magnitude of the c.m. three-
momentum, @tot is obtained from references
1 and 2, and A has been determined by Damouth,
Jones, and Pere. ' After projecting out the par-
tial wave amplitudes from Eq. (1),

2l+ 1
A. P (cos8),

p X, l

0 -.2

cps e
-.8 - l.p

FIG. 1. One-nucleon-exchange model theoretical
cross section for 7). p backvrard elastic scattering at
4.0 BeV/c pion laboratory momentum. The abscissa
is the cosine of the c.m. scattering angle. The experi-
mental data are taken from reference 3 (triangles) and
reference 4 (circles).
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and minima in da/d& can be used to distinguish
between l's that differ by 2 or more. Figure 3
indicates how insensitive the positions of these
extremes are to changes in A~", the l = 7 curve
at 2.25 BeV/c is calculated for background
amplitudes that are 50% smaller and larger
than A~' from Eq. (4). The background am-
plitude could be consistent with experiment
and be much less than 50% Afv' from Eq. (4)
in the region cos8=0 (but not near cos8=-1).
The shape of do/d& is sensitive to this ambi-
guity near cos0=0. However, the shape of
do/dA in the region cos«-0. 7 is very stable.
Thus our method of determining l does not de-
pend significantly on the absorption parame-
ters or form factor used in A~'. Additional
information can be obtained from der/dQ at E
=E, + I'/2, although the effects observed in
Fig. 2 are much less pronounced when the in-
terference is destructive at cos8 = -1. Thus
d&r/dQ at E =E, + I'/2 is most sensitive to l when
l is even.

The results we have obtained depend quite
strongly on our assumption that the background
amplitude is primarily due to the one-nucleon
exchange. However, this assumption results

250

in very definite predictions. The one-nucleon-
exchange amplitude is real and negative and
primarily spin-nonf lip. The resulting sharp
peak in do/dA at 8 = 180' becomes sharper as
E is increased [the value of E'do(f )/dt' is ap-
proximately energy independent], but do/dQ
(8 =180') does not change much with E. With-
in the uncertainties of the absorption correc-
tion, our prediction at 8.0 BeV/c is not in ser-
ious disagreement with the experimental re-
sults. 4 Once the l of a resonance is known,
experiments off resonance, on resonance, and
at the half maxima could check this background
amplitude in detail. When the background am-
plitude is well established, j might also be
determined.

The method we have developed for finding
the l of resonances may be in difficulty when

applied to resonances at higher energies be-
cause the partial width F" is expected to de-
crease rapidly with increasing energy. How-
ever, the predicted resonance' at E, =2.825
BeV (with hotot = 0.4 mb) still shows the same
effects seen in Fig. 2 in the region cosa& -0.8
(i.e. , away from 180' because the resonance
amplitude is relatively small).

We wish to thank A. Krisch and D. Meyer
for several discussions concerning the exper-
imental data, and L. Jones" for his comments
and support.
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FIG. 3. Theoretical cross sections for n p back-
ward elastic scattering at 2.25 BeV/c. d(T/dQ is ob-
tained from Eq. (12) for / =7 and three background am-
plitudes, A&' I.Eq. (4)], 1.5 A&' and 0.5 A&'.
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We present in this paper the following mea-
surements of ~ decay:

1 ~ The widths of several decay modes have
been determined:

(a) r(~ —neut. )/r(&u —m++~ +m') = (9.7~ 1.6)
x10 t

(b) r(v —q(all modes)+neut. )/r(e —m++m

+w ) &1 7x10
(c) r(u) -v++w +y)/r(&-m++v +~o)(5

x10
(d) I (v -m++w )/r(&u —w++w +via) = (Q. 17

~ 0.03)'=2.9x10 ' ( complete coherence"),
or = (8.2 + 2.0) x 10 ("complete incoherence").
Glashow and Sommerfield' point out that ~ —q
+m' violates C conservation. The branching
ratio b sets an upper limit of 0.14 MeV for
r((u —q+v').

2. The co - v++m +n decay has been tested
for nonconservation of C as suggested by Lee'
and found to be consistent with C conservation.

Following is a resume of experimental meth-
ods we used to determine these numbers. De-
tails will be presented in a forthcoming arti-
cle. ~

Measurements have been completed on ap-
proximately 43 620 V+two-prong events in an
exposure of the 72-inch hydrogen chamber to
K mesons with momenta between 1.2 and 1.8
BeV/c. Among these events we have identified
28850 as K +P-A+2 prongs, and of these,
10 242 are identified as

700— (0.(55)

600—

500—

Io
400—

O

300— (0.548 )

~ 880 MeV. We use these control-region events
to estimate the behavior of the background
events in the peak region.

Neutral decay mode. —All the measurements
of 27 660 V+ zero-prong events have been com-
pleted for the momentum settings 1.42, 1.51,
1.60, and 1.70 BeV/c. From these events,
12 351 have been identified as K +P - A + neu-
trals. Figure 1 is the histogram of the invari-
ant mass squared of the neutral system that
recoils against the A; we refer to this as the
square of the missing mass. Peaks for the
7t, q, and ~ mesons are clearly visible. Few
of the K 's in this experiment had momenta

K +t) - A+Ti +m +v'.

By plotting the M(m v vo) histogram, we iden-
tify 4208 events as

K +P - A+ (cu -m++m +m'). (2)

200—
Z

I 00 " U't( U

(0.782)

There are 1450 background events that lie in
the v-peak region, 750 MeV ~M(w+w vo) ~ 815
MeV. In the control regions on either side of
the peak region we find 1202 events in the in-
terval 685 MeV &M(m+m m') &750 MeV, and
1276 events in the interval 815 MeV ~M(m+v mo)

0
—0.2

I I

0 0.2 0.4 0.6 0.8 l,O

Missing mass sqUared (BeV) 2

FIG. 1. Missing-mass squared distribution for
12351 events of K +P —~+neutrals at 1.4, 1.5, 1.6
and 1.7 BeV/c.
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