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Recent experimental investigations of the os-
cillations produced by the universal instability
in a thermal plasma device (Q machine) in-
dicate that the plasma column oscillates as a
bounded structure with traveling maves prop-
agating in the azimuthal direction, correspond-
ing to ascending values of the azimuthal mode
number l = I, 2, 3, ~ ~ ~, and standing waves in
the axial direction, corresponding to Xg =2I-
(I. is the column length). ' A finite-length cor-
rection to the real part of the oscillation fre-
quency (-10%) has also been observed. ' These
results, all in accord with theory, suggest
the possibility of regarding the plasma column
as a bounded, spatially distributed oscillator
with velocity-distr ibuted constituent elements
(plasma particles), reminiscent of the helium-
neon laser. ' The nonlinear behavior of the uni-
versal instability can then be analyzed conveni-
ently by extending the methods of nonlinear
mechanics' to distributed systems of this kind.
This phenomenological approach is complemen-
tary to a more rigorous treatment and can also
delineate the similarities and differences be-
tween the nonlinear behavior of the present
plasma instability and that of other nonlinear
oscillators. For example, the "mode-jumping"
effect reported recently' is found to be related
to mode-competition phenomena described in
lumped-parameter vacuum-tube systems by
van der Pol' and in lasers by iamb, ' and the
analysis of the plasma case has benefitted great-
ly by the latter work.

We shall be interested here in nonlinear mode
interactions in a tmo-mode system mith incom-
mensurate (i.e. , not related by integer ratios)
mode frequencies.

The time dependence of the mode energies
is given by the "rate" equations

dE, /dt = a„E,a„E,' a,+,E-„-
dE2/dt = a20E2-a2zE~E2 am+2, —

where E, and E, are the two time-averaged
mode energies and the a's are coefficients whose
physical significance is explained below. (Un-
important numerical factors have been omitted. )
These equations are obtained by w r iting gener-

dE, /dt =dE2/dt= 0, (2)

is determined by the nature of the singularities
of the rate equations at this point. These sin-
gularities are examined by writing E~ =E~ + e~

(e; «Eto), substituting in (1), neglecting qua-
dratic terms in the e;,"and using (2). This
procedure yields

-0, = (a„E,')e, + (a„E,')e„
-e, = (a„E,')e, + (a„E,')e, .

al polynomial expansions of the form dA&/dt
= P(A;, A&), where P denotes a cubic polynomi-
al in A; and A&, the mode amplitudes, which
are trigonometric functions of the time. Both
sides of this equation are then multiplied by

At, yielding A&(dA&/dt) = 2(d/dt)A& = 2dE&/dt

on the left-hand side, and time averages are
taken over intervals long compared with the
mode periods. Because of the assumed orthog-
onality conditions, only the terms that appear
in (1) survive when this procedure is carried
out. These rate equations mill be recognized
as the generalization to a two-mode system
of the expression suggested by Landau in con-
nection with the analysis of turbulence. '

The a;O represent the effective linear mode
growth rates: a;0=y;+-y;, where y; is the
inherent growth rate while y&~ represents the
ion Landau damping of the ith mode. The a;&
are nonlinear damping coefficients which mould

ordinarily represent any inherent plasma mech-
anism tending to saturate the instability. In
the experiments described here, homever, these
terms have been introduced artificially by oper-
ating with electron sheaths at the endplates so
that the instability is heavily damped by the
Simon short-circuit effect. '&" The azj are mode-
coupling coefficients and the negative signs are
chosen in order to be consistent with the ex-
perimental results, as described below.

To investigate the stability of simultaneous
oscillation in two modes we use phase-plane
topology methods of nonlinear mechanics, ' em-
ploying a phase plane whose coordinates are
the tmo mode energies E, and E,. The stabili-
ty of an equilibrium point E, =E,', E, =E, at
which
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The Routh-Hurwitz criterion then provides
the necessary conditions that must be satisfied
for stable two-mode oscillation at F-,', F-,"
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(a»+a») &0

these conditions are achieved experimentally
by adjustment of the sheath conditions, as ex-
plained above.

Mode competition can now be analyzed by de-
termining the effect of varying an effective mode
growth rate, say a», on the position of a stable
equilibrium point (stable node), as shown in
Fig. 1. The point denoted by I is a stable node,
being the intersection of the two lines AA' and
CC', which follow from (l) and (2)
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AA': E, =-(„/„)2,„/„;
CC'. E, = -(a»/a»)E, +a»/a».

Assume that all parameters remain fixed, with
the exception of a„,which is now reduced to

yo When this is done AA ' is trans lated into
BB', and the stable node moves from I to II,
as shown by the dashed arrow. We note that
the steady-state amplitude of mode 1 is reduced
while that of mode 2 is increased.

This displacement of a stable node can be
demonstrated experimentally by using ion Lan-
dau damping to reduce a„selectively, without
affecting the other experimental parameters.
The mechanism can be understood from the
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FIG. 2. Spectrum-analyzer presentation showing

competition between azimuthal modes of the universal
instability produced by gradually reducing the length
of the plasma column to obtain selective mode quench-
ing by ion Landau damping. The arrows denote frequen-
cy in kc/sec, and the modes correspond to E = 2 and
I = 3 {l is the azimuthal mode number). The column
length is 54, 46, and 38 cm in the top, center, and
bottom photographs, respectively. The relevant phase
velocities are as follows: top, v&2 &3VT, v4) {i).
center, v&2&3VT {~), v&3&3VT{ ); bottom, v&2&3VT{~)
vy 3- 3VT {~), where VZ {~) is the ion thermal velocity.
Logarithmic vertical, scale {full scale = 40 dB).
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FIG. 1. Phase-plane diagram showing the displace-
ment of a stable node from I to II when the effective
growth rate of a mode is reduced. The coordinate ax-
es are the mode energies in a two-mode system, and
the existence of a stable node indicates that simulta-
neous oscillation in two modes is allowed. The inter-
cepts are combinations of the experimental parame-
ters: a&0 {effective growth rates), a&~ {damping coef-
ficients), a~& {mode-coupling coefficients).

following. The phase velocity of a mode i'&
=l(v*/2w)2t. , where u! ~ is a constant (u, */2m
—8 kc/sec), while f and L have been defined
above. When v& &3vT('), where ~~T(~) is the
ion thermal velocity, the mode is damped by
ion Landau damping since the negative curva-
ture of the ion velocity distribution becomes
important at these phase velocities. It has al-
so been shown experimentally that the modes
can be damped sequentially (in the order f = l,
f =2, ~ ~ ~ ) when the column length is reduced
gradually. ' Thus, by appropriate adjustment
of the sheath conditions and the column length,
it is possible to set up an experimental situa-
tion in which only two modes oscillate.
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The results of such a two-mode experiment"
are shown in Fig. 2, in which the l = 2 and l = 3

modes, respectively, play the roles of mode
1 and mode 2 in Fig. 1. In the top picture nei-
ther of these modes is Landau damped, but
the / =1 mode (driven by the nonlinear inter-
action of the l =2 and f =3 modes) is heavily
Landau damped; energy flows from the two
high-frequency modes into the l = 1 mode so
that the mode-coupling coefficients af& in (1)
are negative, as noted above. " In the center
picture the l = 2 mode is Landau damped, but
the amplitude of the l =3 mode has increased,
as predicted by Fig. 1. In the bottom picture
the l = 2 mode is quenched and the l = 3 mode
is starting to show the effects of Landau damp-
ing (displacement of the line CC' toward the
origin in Fig. 1).

It is of interest to examine these results in
the light of an observation by Lamb' that the
possibility of multimode operation in the heli-
um-neon laser depends on the fact that the con-
stituent elements (excited atoms) are distribu-
ted in velocity, so that each mode can be driv-
en by a different velocity class, with only a
small amount of interaction (weak coupling).
This is in contrast with single-stream or fluid-
like strong-coupling systems (such as the van
der Pol vacuum-tube oscillator) in which mul-
timode oscillation is not allowed under the con-
ditions described here (incommensurate frequen-
cies and "soft" self-excitation'). The present
plasma "microinstability" (with the artificial
damping used in these experiments) is evident-
ly similar to the laser ease, with the different
unstable modes being driven by different reso-
nant-electron velocity classes; this feature is
a specific consequence of the fact that the plas-

ma electrons are distributed in velocity. It
also appears that the collective effect of non-
linear mode interactions can have an important
influence on individual mode amplitudes. Fi-
nally, this work points up the desirability of
having available a theoretical calculation of
the self-damping coefficients (a;;) and the mode-
coupling coefficients (ai&) for the universal in-
stability in the weakly nonlinear ease.

A more detailed report of this work is in prep-
aration.
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i3Taking both g
&

to be negative is sufficient to recover
the experimental results. In principle the gz& can also
be of opposite sign, but this case does not appear to
apply here.

INFRARED ABSORPTION STRUCTURE IN RARE-EARTH METALS:
RELATIONSHIP TO SPIN ARRANGEMENT AND BAND STRUCTURE

B. R. Cooper and R. W. Redington

General Electric Research Laboratory, Schenectady, New York
(Received 27 May 1965)

Recently Schaler' reported the appearance
of structure at about 0.35 eV in the infrared
ref lectivity for a holmium film in the temper-
ature range where holmium has a spiral spin
arrangement with periodicity along the c axis.
Following the ideas of Miwa, ,

' Schiiler suggest-
ed that the structure observed is due to the

optical absorption corresponding to energy
gaps in the conduction bands at the magnetic
Brillouin-zone boundaries associated with the
spiral periodicity. It is the purpose of the
present note to point out (1) that there is a
definitive experiment for distinguishing wheth-
er this structure, or indeed any part of the




