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and electromagnetic mass splittings are neglected
throughout this calculation.

4M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705
(1960).

S. L. Adler, Phys. Rev. 137, B1022 (1965); and to be
published.

~S. Fubini and G. Furlan, unpublished.
The cancellation is exact at least at the double pole

and in the region of small denominators where the uni-
tarity condition can be continued off the mass shell.

This use of the Low equation to manipulate the inte-
gration contours of the off-mass-shell scattering am-
plitude is similar to the approach of %. N. Cotting-
ham, Ann. Phys. (N.Y.) 25, 424 (1963).

G. F. Chew, M. L. Goldberger, F. E. Low, and
Y. Nambu, Phys. Rev. 106, 1337 (1957). Our normal-
ization and metric conventions differ from this refer-
ence.

E. Ferrari and F. Selleri, Nuovo Cimento 21, 1028
{1961).
~iFor a more detailed treatment of possible off-mass-

shell corrections, the reader is referred to S. I,.
Adler, accompanying Letter I Phys. Rev. Letters 14,
0000 (1965)].

~ The relevant data has been tabulated by C. Hohlen,
C. Ebel, and J. Giesecke, Z. Physik 180, 430 (1964).
The author thanks Dr. M. Bander for his help in pro-
gramming the numerical integrations.

~3According to (24) it is the effect of the {3,3) reso-
nance which makes icosi&IGI i. In fs.ct tbe (3, 3) reso-
nance contribution alone gives iG~/G Ici = 1.3, snd tbe
higher energy T =

~ resonances reduce this value. The
convergence of the integral depends on the validity of
the Pomeranchuk theorem, but a Otot =Cjv~ fit to
the data above 5 GeV with e = 0.5 to 0.7 gave a —0.02
contribution which has been included in the result.
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1. Introduction. —We have derived a sum rule
expressing the axial-vector coupling-constant
renormalization in P decay in terms of off-mass-
shell pion-proton total cross sections. This
Letter briefly describes the derivation and gives
the numerical results, which agree to within
five percent with experiment. Full details will
be published elsewhere.

The calculation is based on the following as-
sumptions:

(A) The hadronic current responsible for AS
=0 leptonic decays is

where GI is the Fermi coupling constant (GIr
= 1.02x 10 '/M~'). ' Here JX
& (~+.~ ~ . is the vector current, which we as-
sume to be the same as the isospin current, '

Aa aand JX = (lt(trXr5ar /Ac. + ~ ~ ~ '. is the axial-vec-
tor current. Since the vector current is con-
served, the vector coupling constant is unre-
normalized. The renormalized axial-vector
coupling constant gA is defined by

&I(t(q) u )Iv(q))

(B) The axial-vector current is partially con-
served (PCAC), '

—j,U AI gAa N m A a
x x NNv v

g E
(3)

where A'~ is the rationalized, renormalized
pion-nucleon coupling constant (gr'/4v = 14.6),
K~+~(0) is the pionic form factor of the nucle-
on, normalized so that K++~(-Mv2) = 1, and

is the renormalized pion field. According
to Eq. (3), the chiralities X (t) = Jct x(J'~ +iJ~ )

satisfy

d—
x (t)=

dt)'

/cJ xp
g .K (0)

(C) The axial-vector current satisfies the
equal-time commutation relations

(x) ~ (X)j ' = &(x-Y)t«(x) (5)
Aa Ab, , - . abc Vc

~~o =-'o 4

This implies that the chiralities satisfy

lx (t), x (t) ) = »',

= (M /Ct0)G~»~(Ct)(r +r~rxr5)r'»~(w) (2)
where I' is the third component of the isotopic
spin.
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The assumptions (A) are the usual ones for
the leptonic decays. The additional hypotheses
(B) and (C) are both necessary to obtain the sum

rule for g~. The hypotheses (A)-(C) are mutual-

ly consistent, in the sense that there is a renor-
malizable field theory (the v model of Gell-Mann

and Levy~) in which they are exactly satisfied.
2. Sum rule. —There are two essentially equiv-

alent ways to derive the sum rule for g&. The

first is to use a method proposed recently by
Fubini and Furlan. ' %e take the matrix element
of E(I. (6) between single proton states (P(q) I

and tP(q')). The right-hand side gives

(P (q) l2f' IP (q')) = (2E)'h(q —q').

In the matrix element of the commutator we
insert a complete set of intermediate states,
separating out the one-nucleon term (to which

only the neutron contributes):

(p(q) t[)(+(t), )( (t)]tp(q'))

, (t(q)lx t()l (q)q)( (q)ql x(t&lq(q')) ~ Q (q(q»lx"(t)&lj)(t&lx (t)ltt(q'))I-tx —x ).
(2E)'

spin j+N

The one-neutron term is easily evaluated using Eq. (2), giving

(2w) f)(q-q')g '(1-M /q ).

In the summation over higher intermediate states we make use of Eq. (4), giving

(p(q)tfd'x q +tj) (jtfd'x q tp(q ))

+RE( )
y - jgpf

(10)

From Eqs. (9) and (10), we see that there is a family of sum rules, with qo as a parameter. In the
limit as q, approaches infinity, a sum rule for 1-g~ is obtained. Let us assume that the limiting
operation can be taken inside the sum over intermediate states in Eq. (10). It is useful to write this
sum in the form

d3q.
dW 5 8'-M. ,

M~+M

INT

where qj is the total momentum and where "INT" denotes the internal variables of the system j. The
invariant mass of the system j is Mj. The integrations over x and q& can be done explicitly, giving a
factor (2E)'f&((I-q'), and constraining (Ij to be equal to (I. Let us write

ps
(j tq, (0) tp(q)) =

I

q0 q'0 i (12)

so that Fj is a Lorentz scalar. Then using the facts that q 0=(q0 +Mj'-Mpf)' and (q0-qj0) =(q0
+qj0) /(Mj'-M~')', the limit of E(I. (10) becomes

x(2M g ' ~ dWM W

(2E)'6((I-q')

([q + (q '+ W -M ')"']'i
( ~, W2 M 2)ii2 &»m ~& [W, (q-q. ) ]-&+[W, (q —q.)']j, (13a)
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with

K [W, (q-q. )'] = P 6(W-M. )M 'IF .

INT

(13b)

The limit of the quantity in boldface curly brackets is 4, and the limit of the momentum transfer (q
—q. )' = -[qO-(qO'+Mf'-MN')"]' is 0. It is easy to see that K (W, O) is equal to [(R -MN')/(2mMN)]0 0 1
x so+(W), where ao (W) is the total cross section for scattering of a zero-mass m on a proton at cen-
ter-of-mass energy 8'. Thus we get the simple and exact result

1 4M ' 1 t~ WdW

[o,+(W)-~, -(W)].
g g JP (0) vr~M M W -M

A y N m

Here ao+(W) is the total cross section for scattering of a zero-mass m~ on a proton, at center-of-
mass energy W.

The second method of getting the sum rule parallels the derivation from PCAC of a consistency
condition on pion-nucleon scattering. Using the identity

(14)

(d/«)&NtT[X (f)X (0)lt» = &Nt[X (f), X (0)]~(f)t»+&NtT[(d/«)X (f)X (o))~»,

and hypotheses (B) and (C), one obtains the relation

1 -2M
2G(0, 0, 0, 0),

where

G(v, v, M, M ) = —A (v, v, M, M )+B (v, v, M, M ).
i f 1 wN( ) -i f mN( )-i f

W V B' m' B' m'
m

Here A and 8 are the usual odd-isospin pion-
nucleon scattering amplitudes, v and v~ are
the energy and momentum transfer variables,
and Mz~ and Mz are, respectively, the mass-
es of the initial and final pion. If G(v, " ) is
assumed to satisfy an unsubtracted dispersion
relation in the energy variable v, Eq. (14) fol-
lows from Eq. (17). Thus, the assumption that
the limit (q„-~) may be taken inside the sum
over intermediate states in the method of Fu-
bini and Furlan is equivalent to the assumption
that G(v, " ) obeys an unsubtracted dispersion
relation. There is evidence that the unsubtract-

1 4M1-,=, (R, +R, +R, ),
g

(18)

with

ed dispersion relation for G(v, ~ ~ ~ ) is valid. '
Clearly, if a subtraction were required, the
sum rule for g~ would be useless.

3. Numerical evaluation. —Because Eq. (14)
involves off-mass-shell pion-proton scattering
cross sections, a little work is necessary to
compare it with experiment. Let us split the
right-hand side of Eq. (14) into the sum of three
terms:

R = —— —ImG(v, -M '/2M, M, M )
1 dv

1 g M d '
7t N' m' m

—(v' M')"'[o+(v)--v (v)],2F ~ v
M~

(19a)

1 dv 1 dvR = — —ImG(v, -M '/2M M, M )-— —ImG(v, O, M, M ),2 7J M V W N Tl 7f 77 M M 2/2 M V f( 7jr ~+
(19b)
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and
1 dv G(v, 0, 0, 0)—Im G(v, O, M, M )-

w' v Nw' M +M 2/2V
m

' X

(19c)

The dominant term, R„ involves only the phys-
ical pion-proton total cross sections 0 . Nu-

merical evaluation gives ~

(4M '/g ')R =0.254.
N

for g~ is"

g = 1.18~ 0.02. (25)

The term R, can be calculated in terms of pion-
nucleon scattering phase shifts, giving"

(4M '/g ')R = 0.155.r (21)

f (W, M, M )
f

f (WM, M ). (22)
f (WM, M )
lJI ' 7T' ~~

(Here l =orbital angular momentum, &= total
angular momentum, and I =isospin. ) The su-
perscript B denotes the Born approximation.
Multiplying the physical fogy by the ratio of the
Born approximations gives the off-mass-shell
f~~, the correct threshold behavior, and the
correct nearby left-hand singularities. Gener-
alized unitarity implies that the off-mass-shell
and the physical partial-wave amplitudes have
nearly the same phase; Eq. (22), which gives
them identical phases, approximately satisfies
this requirement. Numerical evaluation of R3,
using Eq. (22), gives"

(4M '/g ')8 = -0.061. (23)

It is possible that this number for 83 is correct
to within 20%.'

Combining the three terms of Eq. (18) yields

theory
A'g ~ ~ (24)

We have not attempted to make a detailed er-
ror estimate. ' The best experimental value

The term R„which describes corrections aris-
ing from taking the external pion off the mass
shell, cannot be calculated directly from exper-
imental data. In order to estimate this term,
we assume that the off-mass-shell partial-wave
amplitude ff~&(W, M~'', Mvf) is given by

It is interesting that the region around the
600- and 900-MeV pion-nucleon resonances
makes an important contribution to the sum
rule. If only the contribution of the (3, 3) reso-
nance is retained, we get the result g& =1.44.
Thus, the (3, 3) resonance does not exhaust
the sum rule.

After completing this work, I learned that
a similar calculation has been done indepen-
dently by %'eisber ger. '

*Junior Fellow, Society of Fellows.
~ln the Cabibbo version of universality [N. Cabibbo,

Phys. Rev. Letters 10, 531 (1963)3, G~ is replaced by
cosgG~.

2R. P. Feynman and M. Gell-Man, Phys. Rev. 109,
193 (1958).

3M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705
{1960); Y. Nambu, Phys. Rev. Letters 4, 380 {1960);
S. L. Adler, Phys. Rev. 137, 81022 (1965).

4Gell-Mann and Levy, reference 2. The viewpoint
that the commutation relations of Eq. (5) may hold ex-
actly is due to Gell-Mann [M. Gell-Mann, Physics 1,
63 {1964)3.

5S. Fubini and G. Furlan, to be published.
S. L. Adler, reference 3 and to be published; Y. Nam-

bu and D. Lurie, Phys. Rev. 125, 1429 {1962); Y. Nam-
by and E. Shrauner, Phys. Rev. 128, 862 (1962}.

In the scattering reaction 7I (k&) +p (q&) m (k2) +p (q2),
the variables v, vB, M„, and M„fare defined by v

=-k1 (ql+q2)/2MN ~B =kl-k2/2M%, (M~') =-k1,
{M f) =-k 2.

First of all, the convergence of the sum rule of
Eq. (11) suggests that an unsubtracted dispersion re-
lation is valid. Secondly, B. Amblard et al. , Phys.
Letters 10, 138 (1964), have shown that the physical
forward charge-exchange amplitude G(v, —Mz /2M~,
M~, M~) satisfies an unsubtracted dispersion relation.
It would be surprising if this result were changed by
the extrapolation of the external pion mass from Mz
to 0.

Values of o~ from 0 to 110 MeV were taken from
the smoothed fit of N. P. Klepikov et al. , Joint Insti-
tute for Nuclear Research Report No. D-584, 1960 (un-
published). From 110 to 4950 MeV we used the tabu-
lation of B. Amblard et al. , Phys. Letters 10, 138
(1964) and private communication. Above 4950 MeV,
we used the asymptotic formula 0 -0+= 7.73 mb && [k/
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(1 BeV/c)] '7 given by G. von Dardel et al. , Phys. Rev.
Letters 8, 173 (1962). This formula gives a good fit
to the experimental data up to 20 BeU/c. The contri-
bution to the sum rule of the region beyond 20 Bev/c
is negligible.

~ For the pion-nucleon coupling constant we used the
value f =gz M+2/16aM& = 0.081 + 0.002, quoted by
W. S. Woolcock, Proceedings of the Aix-en-Provence
Conference on Elementary Particles, 1961 (C.E.N. ,

Saclay, France, 1961), Vol. I, p. 459.
It is convenient to write R& as a single integral over

pion-nucleon center-of-mass energy W', the integrand
of which is the difference of two terms. This integral
is sensitive only to low-energy pion-nucleon scatter-
ing data, since the two terms in the integrand cancel
at high energies. The number quoted in the text was
obtained using Roper's l~ =3 phase shifts [L. D. Ho-
per, Phys. Hev. Letters 12, 340 (1964), and private
communication], truncating the integral at 8' = 11.20
M&. The integral is dominated by the (3, 3) resonances:
Extending the integral only over the (3, 3) resonance
gave (4M& /gz )R 2

= 0.166. A third calculation, using
simple Breit-Wigner forms for the (3, 3) and the 600-
and 900-MeV resonances, and neglecting all other par-
tial waves, gave (4M~ /gz )R2=0.156. Thus, the val-
ue of R& is insensitive to "controversial" features of

B.oper's phases, such as whether the P&& wave reso-
nates.

This number was obtained using Roper's phase
shifts, truncating the integral at 8' = 11.20 M„. Extend-
ing the integral only over the (3, 3) resonance gave
(4MpT /g~ )R~ = —0.066; evaluating the integral with on-
ly Breit-Wigner terms for the low-lying resonances
gave (4M~ /gz )R3 =-0.059.

To estimate the accuracy of the model, we repeated
the calculation of R3 v ith the assumption flJI'(8', 0, 0)

flJI 8 'M, M K 0) (5 -M~ ) [(g2 M~2+M 2)2
—48' M„], which includes only a threshold correc-2 2

tion factor, and a constant factor IP (0) to account
for the change in strength of the nearby left-hand sin-
gularities. The numerical result for (4M~ /g& )R3
u,.as changed by about 20 /~, to —0.051.

~4The variation among different calculations (refer-
ences 11-13) of R2 and R3 gives an idea of the uncer-
tainty in the theoretical result.

~5C. S. Wu, private communication.
6W. I. Weisberger, accompanying Letter [Phys. Rev.

Letters 14, 0000 (1965)]. In the numerical evaluation
of Weisberger, g~ is calculated from the dominant
term Rl, giving g~ = 1.16.
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