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It has been strongly suggested by Gell-Mann'
that "the integrals of the time components of
the vector and the axial-vector current octets
~ ~ ~ generate, under equal time commutation,
the algebra of SU(3)SSU(3)," and that these
algebraic relations are preserved even though
the axial-vector and the strangeness-changing
vector currents are not conserved. These non-
linear commutation relations fix the relative
scale of the vector and axial-vector matrix
elements measured in the weak interactions.

In this Letter these ideas are combined with
that of a partially conserved A7 = 0 axial-vec-
tor current to obtain an expression in terms
of v-proton total cross sections, (24), for I GA/
t"Vl, the absolute ratio of renormalized axial-
vector and vector coupling constants of ordinary
I3 decay. A numerical evaluation using experi-
mental data for strong interaction 77-nucleon
scattering yields

I G /G I
= 1 16.

V

The present experimental value' is

G /G = —1.18+ 0.02.

We consider the charges defined by

leptonic decays of the hadrons is taken as

-L = (G /&2)j (V *A )+H.adj. ,eff V ' lept

V ~=V '~iV

For matrix elements between physical pro-
ton and neutron states of equal momentum it
follows that

&P(P)IA '(x)I~(P)&

(M/Z ) G
=

(2,), G
~(P)y ~6~(P),5

(4)

which defines Gg, the renormalized axial-vec-
tor coupling constant.

By partial conservation of the axial-vector
current, (PCAC), ~&' we mean

i( )
fv2Mp, f.

( )
g K (0) rr

vn ann

where y~(x) is the renormalized Heisenberg
field of the v mesons; M = nucleon mass, p, =pion
mass, g~„'/4v =14.6, and Kvn„(0) is the invari-
ant 7T-nucleon vertex function evaluated at zero
pion mass.

The commutation rule which we use is

I =fd'xV, Q =Jd'xA, i=1 2 3,

where Vo', A,' are the time components of the
isovector members of the vector and axial-
vector current octets. V& is, in fact, the con-
served isotopic spin current' so that I is the
total isotopic spin operator. Q~ is the isotopic
chirality. The effective interaction for AY =0

(2)
21 =[@ ', q -1. (6)

Adapting the method of Fubini and Furlan, ' we
take matrix elements of (6) between physical
one-proton states which gives

6"'(p2-pl) = &P(p2) I [a ', q J IP(p ))

We introduce a complete set of physical inter-
mediate states in the right-hand side of (7) and
isolate the contribution of one-neutron states:

G ) /M)
6"'(p2-pl) =II G

1-I ~ I 6"'(p2-p )+ ) (P(p2) IQ +I a t)( a IQ IP(p ))

From (6)

&P(p )Ie

-2 &P(p2)IQ IP t&& tPIQ +IP(pl)&

-i(P(P2) I@ +I o ) &2M'' (P(P ) I y +(x) I o )

Z-Z . g K (0) Z-Z
P Q 7T P2 7T Yl7l P n

(6)
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We then obtain, for the second term on the right side of (8),

5 &P(~2) I e.'I ~.„,&&.„,~ I ~.
—

IP(~, )&

+AN

gran rnn - V omin O'Q~N

x5&"(p -p )5(E +k F. -),
p 0 e' (10)

with

k . =[(I+p)'+ Ip I']"'-8, 0 ~k
0 min 1 P' 0 min

The multiplicative factor, 5"'(p,-p, ), appears
in all terms of (9) and will be dropped. We

put p, = p, = p. The matrix elements occuring
in (10) can be classified into two types of Feyn-
man diagrams: (a) connected graphs which
correspond to scattering from an initial state
of the proton and the off-mass-shell pion, in

the rest frame of the pion, to the final state,
(outo I

' (b) disconnected graphs corresponding
to propagation of the proton without interaction.
For graphs of type {a),

(,~ I y, -(0) IP(f )) „
to ij„(o)IP(P))

ko —p. + EE

where

j,(x) =- ID+ g')y„(x).

For graphs of type (b) we write

&.„,~ I ~,-(0) IP(j ))„.„
= &"'rp-p')& o'I 0 (o) I o),

out n
(12)

where p' is the momentum of the free proton
in the state (outa i.

When taking the absolute square of the ma-
trix elements in (10) there will be contributions
from squares of connected graphs, squares
of disconnected graphs, and cross terms. All
terms from squared disconnected graphs can
be neglected since they will be exactly cancelled
by corresponding contributions from the other
term of the commutator in (8). The cross terms
should be dominated by I a') = in), a physical
one-pion state. Other states have higher thresh-
olds in ko, and their contribution should be
damped strongly in the ko integration of (10).
This assumption is in the basic spirit of the
PCAC hypothesis. One then obtains

(0)IP(p))i'~"'rp-P )&(~p+k0-~ )

fP0 . 0 ~gPf

dk I( a ij (0)IP)l'I)"'{p p )5(E +k -F. ) 6(k -g) P(p)w (k=0)ij (0) IP(p))
0 out ~ e P 0 n 0 out jt'

(ko —p +le)(ko —p. f'e)- (2m)"'v 2p k '-p, '+sf

(P Ij (0) I P(P)v (k = 0) )
+ 2 a 0

ko —p.
(13)

The frightening looking singularities in the above expression will be cancelled by unitarity. Since
the T-matrix elements in (13) are multiplied by 5(ko—p), they can be continued in the pion mass from
p. to 0,. That is,

( P(P)~ (k=o)ij (0)IP(P)) = . & (k, & );
jl ko



VOLUME 14, NUMBER 25 PHYSICAL REVIEW LETTERS 21 JUNE 1965

T (k, E ) = fd'y 8 ' '&&(P)ITj['(y)j (O)jap(P))

+ (equal-time commutators independent of k,).

T[j „+(y)j~ (0) J denotes the time o-rdered product of the pion currents. Similarly,

1 1,+ 1

( )"'& (2 )'(2 )
kp

(14a)

(14b)

T„-p,f has a representation similar to that for T&-p above, except in terms of an antitime-ordered
product. Tq p(kO -Ep) is the m -proton forward elastic scattering amplitude in reference system
where the off-mass-shell pion is at rest and the proton has momentum P. If we now use

5(k,—p. ) =~k 1
&Z 0p —P, —

Z 6 kp JLL + ZC~i

and substitute these results into (13), it can be seen that the coefficient of the dangerous double-pole
pinch vanishes due to the unitarity condition. 7

Performing the same manipulations for the Qp term in (9), one arrives at the result

(6 'l ' (M)t' 2M'' 'fl) dk T (k, E ) T g(k
I .(2„)~

EC ) &E ] g K (O) i2»j k . k ' (k '-p'+ie)' (k ' p' f—e)'—
V p vn 7Tnn Omin 0 0 0

(15)

To evaluate the integral above, we return to the expression (14a) for T„f,(kO, Ep), -insert a com-
plete set of intermediate states in the time-ordered product, and obtain a Low equation for T:

l(p(p)lj +in)l'6"'(p-p ) l(&(p)lj Ip)l'&"'(p —p )
T (k, E)=(2m)' . . -).

m P 0' k +E -E +is k-E +E -iea 0 p n 0 p n
(16)

All the kp dependence of T„-~ is in the denomina-
tors. For fixed physical Ep, T„-p(kO, Ep) is
analytic in the complex k, plane with branch

min to +~ and from k0 min to
The one-nucleon intermediate state does

not contribute a pole term at k, =0 since the
residue is zero for a pseudoscala. r pion. Let
v'(z, Ep) denote the analytic continuation of
Tv-p(kO, Ep). Tz p(kO, Ep) is th-e limit of v'(z,

Ep) on the top of the right-hand cut and the bot-
tom of the left-hand cut ~ It can be shown in
the same manner that Tz-p'f(kO, Ep) is the lim-
it of ( vEzp) on the other sides of the cuts.
Using crossing symmetry, the integral in (15)
can then be evaluated as

1 (z,vE )dz 1 d'
p T (k i E ) i 172vi Cz-p, z' p. dk v P O' P k =0'

where C is the contour indicated in Fig. 1.
Crossing symmetry further implies that

dk, ,-P(O'P) k, =O=dk, ' "O'P) k =O0

where T is the coefficient of the antisymmet-
ric isospin function in the conventional decom-
position for ~-nucleon scattering. '

We seek to reduce our answer to an expres-
sion involving on-the-mass-shell quantities
only. The forward scattering amplitudes sat-
isfy dispersion relations' in the variables v,
the pion energy in the "laboratory system"
where the nucleon is at rest, and these disper-
sion relations can be continued in the pion mass
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to A'= 0. Since k0F.~ =Mv,

E
dko 0' p k0=0 sko M sv 0' ko=v =0, v/k =E/M

T (k, E ) = +——T (k, v)

From the dispersion relations,

d g K (0) ' 2 ~ dv

(20)

where m, is the invariant forward scattering amplitude. The energy-dependent term contribution
comes from the Born term. We now write for (15)

OG dv
= 1 + (I/n )[(2M)/g K (0)]' —,ImOII (k = 0 v).

yG j vn ann &+ &2/2M v' 0 (21)

The contribution of the Born term from the dispersion relations has completely cancelled the origi-
nal factor (M/Ep)' from the one-neutron intermediate state, and we are left with a covariant answer.
To put the answer in a final useful form, first let vf = v —(p'/2M). In the region of integration, "~"

gq, [k =0, v +(g'-k ')/2MJ=K '(0)OII (p v )0 ' 1. 0 TInn

where q is the magnitude of the three-momentum of the pion in the laboratory system. We obtain
finally an answer in terms of experimentally measured total cross sections,

G~ (2) ( M '} qdv

G l, ~j (g j p. v ' tot L tot L
} U fTn I

"o mm

Evaluation of (24) using experimental cross
sections" gives the result quoted in (1).'3

The author is indebted to his colleagues in
the theoretical group at Stanford Linear Accel-
erator Center for their friendly and stimulat-
ing interest in this calculation. For helpful
discussions, he is particularly grateful to Pro-
fessor J. D. Bjorken, Professor S. D. Drell,
Dr. A. C. Finn, and Dr. J. D. Sullivan. In addi-
tion, he wishes to thank Professor Drell for
a critical reading of this manuscript.

After completing this work, the author was
informed that similar results have been inde-
pendently obtained by Adler. "

I"IG. l. The contour of integration C for the integral
in 417).

~M. Gell-Mann, Phys. Hev. 125, 1067 (1962); Physics
1, 63 (1964).

2C. S. Wu, private communication.
Electromagnetic violations of isospin conservation
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and electromagnetic mass splittings are neglected
throughout this calculation.
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S. L. Adler, Phys. Rev. 137, B1022 (1965); and to be
published.

~S. Fubini and G. Furlan, unpublished.
The cancellation is exact at least at the double pole

and in the region of small denominators where the uni-
tarity condition can be continued off the mass shell.

This use of the Low equation to manipulate the inte-
gration contours of the off-mass-shell scattering am-
plitude is similar to the approach of %. N. Cotting-
ham, Ann. Phys. (N.Y.) 25, 424 (1963).

G. F. Chew, M. L. Goldberger, F. E. Low, and
Y. Nambu, Phys. Rev. 106, 1337 (1957). Our normal-
ization and metric conventions differ from this refer-
ence.

E. Ferrari and F. Selleri, Nuovo Cimento 21, 1028
{1961).
~iFor a more detailed treatment of possible off-mass-

shell corrections, the reader is referred to S. I,.
Adler, accompanying Letter I Phys. Rev. Letters 14,
0000 (1965)].

~ The relevant data has been tabulated by C. Hohlen,
C. Ebel, and J. Giesecke, Z. Physik 180, 430 (1964).
The author thanks Dr. M. Bander for his help in pro-
gramming the numerical integrations.

~3According to (24) it is the effect of the {3,3) reso-
nance which makes icosi&IGI i. In fs.ct tbe (3, 3) reso-
nance contribution alone gives iG~/G Ici = 1.3, snd tbe
higher energy T =

~ resonances reduce this value. The
convergence of the integral depends on the validity of
the Pomeranchuk theorem, but a Otot =Cjv~ fit to
the data above 5 GeV with e = 0.5 to 0.7 gave a —0.02
contribution which has been included in the result.

CALCULATION OF THE AXIAL-VECTOR COUPLING CONSTANT RENORMALIZATION IN P DECAY

Stephen L. Adler*

Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts
(Received 17 May 1965)

1. Introduction. —We have derived a sum rule
expressing the axial-vector coupling-constant
renormalization in P decay in terms of off-mass-
shell pion-proton total cross sections. This
Letter briefly describes the derivation and gives
the numerical results, which agree to within
five percent with experiment. Full details will
be published elsewhere.

The calculation is based on the following as-
sumptions:

(A) The hadronic current responsible for AS
=0 leptonic decays is

where GI is the Fermi coupling constant (GIr
= 1.02x 10 '/M~'). ' Here JX
& (~+.~ ~ . is the vector current, which we as-
sume to be the same as the isospin current, '

Aa aand JX = (lt(trXr5ar /Ac. + ~ ~ ~ '. is the axial-vec-
tor current. Since the vector current is con-
served, the vector coupling constant is unre-
normalized. The renormalized axial-vector
coupling constant gA is defined by

&I(t(q) u )Iv(q))

(B) The axial-vector current is partially con-
served (PCAC), '

—j,U AI gAa N m A a
x x NNv v

g E
(3)

where A'~ is the rationalized, renormalized
pion-nucleon coupling constant (gr'/4v = 14.6),
K~+~(0) is the pionic form factor of the nucle-
on, normalized so that K++~(-Mv2) = 1, and

is the renormalized pion field. According
to Eq. (3), the chiralities X (t) = Jct x(J'~ +iJ~ )

satisfy

d—
x (t)=

dt)'

/cJ xp
g .K (0)

(C) The axial-vector current satisfies the
equal-time commutation relations

(x) ~ (X)j ' = &(x-Y)t«(x) (5)
Aa Ab, , - . abc Vc

~~o =-'o 4

This implies that the chiralities satisfy

lx (t), x (t) ) = »',

= (M /Ct0)G~»~(Ct)(r +r~rxr5)r'»~(w) (2)
where I' is the third component of the isotopic
spin.
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