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A spin 1=2 is the simplest system that has been believed to support a single two-level quantum system,
represented by a single resonance. We experimentally demonstrate that a spin-1=2 nucleus of 19F in C6F6
exhibits an extra resonance corresponding to the emergence of the states, by mechanically rotating a sample
and a coil in nuclear magnetic resonance (NMR) measurements. On the basis of the Floquet formalism,
we identify the emergence of the extra two-level state due to the temporal periodicity generated by the
mechanical rotation (mechanical spin multiplexing) and derive an operator algebra analogous to the planar
rotor algebra in an effective description of the system. The observed multiplexing allows a single spin 1=2
to carry more than two states and potentially enabling the processing of multiple quantum bits on a
single spin.

DOI: 10.1103/PhysRevLett.134.130603

Introduction—The spins of nuclei and electrons have
long been used as information carriers. Nuclear and elec-
tron spins are essential in quantum information technology,
while magnetic memory devices have exploited electron-
spin magnetization. A single spin 1=2 is the simplest
quantum two-level system, comprising only two states.
Its energy absorption spectrum is thus of single resonance
[1,2]; e.g., magnetic resonance spectra for spin-1=2 nuclei
exhibit only a single peak as shown in Fig. 1(a), which
corresponds to the transition from j↑i to j↓i states. There
seems no chance for other resonance to appear in such a
spin-1=2 system.
It is of fundamental importance to encode multiple

pieces of quantum information in order to realize useful
quantum information processing. Multiplexing of quantum
states has opened up a new direction for such encoding by
using only a single physical system. For instance, a single
photon can carry information of a quantum bit (qubit) in
several different forms such as polarization, path, temporal,
and angular momentum degrees of freedoms [4–6].
Neutron interferometry has demonstrated the encoding of
two and three qubits by utilizing the spin, path, and energy

of a neutron, thereby illustrating fundamental phenomena
involving multientangled states [7–9]. Engineering such
multiplexed states for other quantum systems remains one
of the challenges in quantum information science.
In this Letter, we propose a method of multiplexing

nuclear spin states combining a mechanical rotation and
nuclear magnetic resonance (NMR). We show that, con-
trary to the common knowledge, a spin-1=2 nucleus of 19F
in C6F6 exhibits unknown extra resonance as shown in
Fig. 1(b), when the NMR measurement is performed in the
mechanical rotating frame (MRF) of reference same as the
rotating sample under an external magnetic field non-
colinear to the mechanical rotation axis. As shown in
Fig. 1(b), the observed NMR line splits into three lines with
the frequency of ω=2π and ðω�ΩÞ=2π, respectively. Here,
ω and Ω represent the resonance frequency under the
external field of B0 and the mechanical rotation frequency
of the sample, respectively. The line splitting is not due to
the spinning side band commonly observed in the magic
angle spinning (MAS) NMR, since the NMR frequency
shift is much greater than the original NMR line width [10].
Therefore, the three NMR line splitting over the wide range
of frequency shown in Fig. 1(b) cannot be explained by
conventional approach. As we discuss in the following,*Contact author: chudo.hiroyuki@jaea.go.jp
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the extra resonance is clearly explained by the mechanical
spin multiplexing (MSM).
Experimental method—We have developed a minute

resonance circuit for NMR [11–14], to realize NMR
measurements in a MRF of reference [Fig. 2(a)]. The
sample is put into a coil (sample coil), which is used for
picking up NMR signals from the sample. The sample
coil is connected with another coil (coupling coil) and a
chip capacitor in series to form a resonance circuit. The
resonance circuit is installed into a high-speed rotor, which
was commercially produced for MAS NMRmeasurements.
The resonance circuit is mechanically rotated during the
NMR measurements, in which the electromagnetic cou-
pling is established between the coupling coil in the MRF
of reference and the stationary coil in the laboratory frame
of reference. The stationary coil is connected to an NMR
spectrometer. A radio-frequency wave pulse generated at
the NMR spectrometer is transmitted via the stationary and
coupling coils to the sample coil. Then, an NMR signal
picked up at the sample coil is transmitted via the coils to
the spectrometer. We set the sample coil tilting from the
rotation axis by the angle α ≃ 45° to detect the longitudinal
and transverse components of nuclear spin dynamics with
respect to the mechanical rotation axis. To simplify the
following discussion, we define the z axis as the mechani-
cal rotation axis. The other coordinate axes of the labo-
ratory and mechanical rotating frames of reference are
defined as shown in Figs. 2(b)–2(d), respectively. In the
laboratory frame of reference shown in Fig. 2(b), the
external magnetic field is applied in the z-x plane, where
θ represents the angle between the z axis and the direction
of the magnetic field. The sample and the resonant circuit
are rotated at the angular velocity Ω around the z direction.
In the MRF of reference same as the rotating sample, the
static external field is rotating with the frequency −Ω=2π
and the sample is static as shown in Fig. 2(c). In addition,
the Barnett field BΩ emerges as an inertial field along the

mechanical rotation axis associated with the coordinate
transformation [14–17]. We used liquid F6C6 with a purity
of 99.0% as a sample for the NMR measurement.
Experimental results—Figure 3(a) shows 19F (S ¼ 1=2)

NMR spectra for F6C6 measured by rotating the sample
and the coil system simultaneously. The rotation axis is set
perpendicular to the external magnetic field. When the
sample is not rotating (Ω ¼ 0), we observe usual one NMR
line arising from the two-level system of the nuclear spin
S ¼ 1=2 system [18]. When the sample is rotating (Ω ≠ 0),
on the other hand, the single NMR line observed at Ω ¼ 0
splits into three lines, despite S ¼ 1=2. The frequency
shifts Δf deviated from the value of γB0=2π, where γ is
the gyromagnetic ratio of the spin, coincide with 0 and
�Ω=2π kHz, respectively.
When we put the sample coil perpendicular to the

rotation axis (α ¼ 90°), only the transverse components
of nuclear spin dynamics with respect to the rotation axis
can be observed. The result is shown in Fig. 3(b). The
single NMR line splits into two accompanied by the NMR
shift of �Ω=2π. Therefore, these two lines can be assigned
to the transverse components of the nuclear spin dynamics.
By contrary, the NMR line at Δf ¼ 0 shown in Fig. 3(a)
can be assigned to the longitudinal components of nuclear
spin dynamics with respect to the rotation axis. It should
be noted that usual spinning NMR measurements have
only observed this longitudinal component, and, thus, there
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FIG. 2. A schematic illustration of the tuning circuit used in
the present study. (a) The sample coil, the coupling coil, and the
capacitor comprise a resonant circuit put inside the rotor. The
sample coil tilts from the mechanical rotation axis [zðZÞ axis] and
the angle, α, is intentionally set to be nearly 45°. (b),(c) Exper-
imental conditions observed from the laboratory and the
mechanical rotating frames of reference, respectively. The nota-
tions of the coordinate axes are defined as small and capital letters
for the laboratory and mechanical rotating frames of reference,
respectively. The mechanical rotation axis is in parallel to the
z ðZÞ axis and the external magnetic field is applied in the z-x
plane of the laboratory frame of reference. (d) Comparison of the
coordinate axes between the laboratory and mechanical rotating
frames of reference.
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FIG. 1. NMR line splitting is created by mechanical rotation.
(a) NMR line arises from S ¼ �1=2 state. (b) ϵ1–4 represent
quasi-energy derived from Eq. (4) (see also Supplemental
Material [3] Sec. 2.3). Origin of the horizontal axis is the
resonance frequency without rotation, i.e., ω=2π ¼ γB0.
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is no additional NMR shift accompanied by the sample
rotation.
In Fig. 4(a), we show the θ dependence of the NMR

spectra. The rotation frequency Ω=2π is fixed at þ1 kHz.
Contrary to the naive expectation based on the θ depend-
ence of the Barnett field projected onto the external field
direction, BΩ ∝ cos θ, the observed resonance frequency
does not depend on θ, but the NMR intensity does depend
on θ: at θ ¼ 0°, only the single NMR line is observed at
Δf ¼ þ1 kHz. The intensity of the signal decreases with
increasing θ from 0° to 180°. Around θ ¼ 20°, the center

line appears at Δf ¼ 0 kHz. The intensity of the center line
shows maximum at θ ¼ 90°. Then, around θ ¼ 50°, the
remaining signal appears at Δf ¼ −1 kHz. The intensity of
the remaining signal shows maximum at θ ¼ 180°. The angle
dependence of the NMR intensities are shown in Fig. 4(b).
The observed NMR spectra can well be explained by the

transition between states related to the spin Sð¼ 1=2Þ and
pseudospin T introduced to represent the rotation effect.
The pseudospin T arises from the temporal periodicity of
the quantum system introduced by the rotation. In the
present study, the sample coil is in the MRF of reference.
Therefore, the static external field is rotating in the MRF of
reference. This rotating external field gives temporary
periodic field for the nuclear spin system. In the following,
we show that the effect of the periodically rotating field
acting on the spin 1=2 can be represented by a pseudospin
T, whose transition can well reproduce the observed NMR
spectra.
Theoretical analysis—We consider a spin 1=2 exposed to

an external magnetic field, B, with the magnitude of B. The
energy of the spin S is given by a formula called the spin
Hamiltonian,

Ĥspin ¼ −γℏB · S: ð1Þ

The quantum eigenstates of Eq. (1) are up (↑) and down (↓)
states. The spin system is then mechanically rotated
perpendicular to the magnetic field with an angular
velocity, Ω, to give temporal periodicity to the spin system,
where γB is much greater than Ω. The spin is observed in
the sameMRF of reference. In the frame, the spin dynamics
is described by time-dependent Hamiltonian, which has
periodicity in time ĤrotðtÞ ¼ Ĥrotðtþ 2π=ΩÞ. The static
quantum eigenstates cannot be obtained for the time-
dependent Hamiltonian. However, for the time-periodic
Hamiltonian, the steady states, which are eigenstates of the
Floquet Hamiltonian [19–21], can be considered in the
extended Hilbert space incorporating the degrees of free-
dom of Fourier modes originating from the periodicity. The
orthonormal basis states in the extended Hilbert space are
given by ji; ni ¼ j↑or ↓i ⊗ jni, where jii ¼ j↑i or j↓i
is the spin state, jni ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðΩ=2πÞp

einΩt is the Fourier basis
function, and n is an integer label of the Fourier modes. In
the Floquet formalism based on the extended Hilbert space,
the standard description of quantum mechanics with the
static Hamiltonian, including spectral and perturbative
analysis, is held over in the time-periodic case [19–21].
(See also Refs. [22–31] for recent applications of the
Floquet formalism to solid-state, cold atomic, and photonic
systems).
The effective spin Hamiltonian in the MRF of reference

in the extended Hilbert space can be written as

Ĥeff ¼
ℏγB
2

�
L̂þ L̂†�þ ℏΩ

�
M̂ þ N̂

�
; ð2Þ
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FIG. 3. 19F NMR spectra in C6F6 obtained at various values of
Ω with the external field perpendicular to the rotational axis. (a),
(b) The NMR spectra obtained with the set up of the sample coil
set 45° and 90° to the rotation axis, respectively. The horizontal
axes Δf are the frequency measured from the center frequency of
the NMR spectrum at Ω ¼ 0.
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FIG. 4. Angular variation of the NMR spectra. (a) NMR spectra
obtained at various values of θ, the angle between the mechanical
rotation axis and the external field. The rotational frequency is
fixed at Ω=2π ¼ þ1 kHz. The horizontal axis Δf is the fre-
quency measured from the center frequency of the NMR
spectrum at Ω ¼ 0. (b) The angular dependence of the NMR
intensities at the frequencies Δf ¼ 0 (green circle), Δf ¼
þ1 kHz (red circle), and Δf ¼ −1 kHz (blue circle), respec-
tively. The dotted curves represent the NMR intensity obtained
from the theoretical calculation [Eq. (5)]. From the fit to the data,
the angle α between the mechanical rotation axis and the axis of
the sample coil is estimated to be nearly 47°.
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where the spin-mode operators L̂; L̂†; M̂ and the mode-
number operator N̂ are introduced. The operator L̂
increases the spin and decreases the mode by single unit,
L̂† decreases the spin and increases the mode by single unit,
and M̂ measures the spin of the states. The action of the
spin-mode and mode-number operators on the basis states
ji; ni in the extended Hilbert space is explicitly given in
Supplemental Material [3] Sec. 2.3. The commutation
relations among these operators become

�
L̂; L̂†� ¼ 2M̂;

�
M̂; L̂

� ¼ L̂;
�
M̂; L̂†� ¼ −L̂†;�

N̂; L̂
� ¼ −L̂;

�
N̂; L̂†� ¼ L̂†;

�
N̂; M̂

� ¼ 0. ð3Þ

This algebra has a similar structure to the planar rotor algebra
(or orbital angular momentum algebra along a fixed axis),
which is in contrast to the harmonic oscillator algebra. The
cyclic property of the rotor has recently gained a renewed
interest upon constructing bosonic quantum error correcting
codes, since it is the underlying basis for recent develop-
ments of the variants of the Gottesman-Kitaev-Perskill codes
[32–35].
Importantly, the operator Δ̂ ¼ M̂ þ N̂ commutes with

Ĥeff , and this leads to the conservation of the eigenvalue
(Δ) of Δ̂ under the time evolution given by the effective
Hamiltonian. Starting with the spin states in the static
situation (n ¼ 0), the effective Hamiltonian only allows the
mixing between two pairs of the states: one is jS1i ¼ j↑; 0i
and jS2i ¼ j↓; 1i with Δ ¼ 1=2, and the other is jS3i ¼
j↓; 0i and jS4i ¼ j↑;−1i with Δ ¼ −1=2. Thus, the
extended Hilbert space can be reduced to the subspace
spanned by these four states: Hsub ¼ SpanCfjSiigi¼1;2;3;4.
The reduced Hamiltonian in this subspace becomes

Ĥred ¼ ℏγB

�
I ⊗

σx
2

�
þ ℏΩ

�
σz
2
⊗ I

�
; ð4Þ

where I is the ð2 × 2Þ unit matrix and σa (a ¼ x; y; z) is the
Pauli matrix. The form of Ĥred can also be expressed by the
sum of two spin operators: one corresponds to the original
spin represented by Ŝa ¼ I ⊗ ðσa=2Þ, which gives the
Zeeman coupling, and the other is the pseudospin T̂a ¼
ðσa=2Þ ⊗ I which gives the rotational coupling. For general
rotation with the angle θ between the mechanical rotation
axis and external field, the spin states can also be comprised
of the spin Ŝa and pseudospin T̂a. The eigenvalues
(quasienergies) of the effective Hamiltonian in the extended
Hilbert space are given by ε1–4 ¼ −ðℏγB� ℏΩÞ=2, and
ðℏγB� ℏΩÞ=2. Notably, the quasienergy spectrum is
determined solely by the temporal periodicity of the
Hamiltonian (and the external field) and is independent of
the angle θ. Consequently, the resulting resonance frequen-
cies exhibit no angular dependence, which is consistent

with the absence of angular variation in the shifts of the
NMR spectra, as shown in Fig. 4(a).
From another perspective, we also show that the pseudo-

spin generates from the topological origin based on the
Berry’s geometric phase [36,37]. Quantum states of a spin
1=2 with the mechanically rotating magnetic field has the
Berry’s gauge connection carrying a Dirac’s monopole
[38], and the representation of the gauge connection gives
rise to a topological degree of freedom: one must choose
either northern or southern hemisphere of the spherical
surface swept by the spin [37,39]. The pseudospin degrees
of freedom in the extended Hilbert space corresponds to the
choice of the gauge connection. We present the detailed
discussion about the topological nature of the pseudo spin
in Supplemental Material [3] Sec. 2.5.
The NMR spectral intensity can be calculated by using

Fermi’s golden rule, which is generalized to the steady
states in the extended Hilbert space, with a microwave
perturbation given by V̂ðtÞ ¼ −γℏeiωtb · Sþ ðH:c:Þ. (See
Supplemental Material [3] Sec. 3 for the details of the
calculation.) The calculated power spectrum with the angle
θ has three peaks at the frequency of γB=2π; ðγB�ΩÞ=2π,
which are derived from the longitudinal and transverse
components of nuclear spin dynamics with respect to the
mechanical rotation axis, respectively. The proposed model
explains well the experimental result shown in Fig. 3(a).
The ratio of the peak power becomes

PBþΩ∶PB∶PB−Ω ¼ cos4
�
θ

2

�
∶sin2θ∶sin4

�
θ

2

�
: ð5Þ

The angular dependence of the power spectrum well
reproduces the experimental data shown in Fig. 4(b),
demonstrating the relevance of the extra degree of freedom
represented by the pseudospin T emerging in the present
nuclear spin system.
The emergence of the extra resonance peak means the

pseudospin state carries extra information in principle.
Indeed, (logical) two qubits can be encoded in the multi-
plexed four states: jS1i ¼ j0L; 0Li, jS2i ¼ j1L; 0Li,
jS3i ¼ j0L; 1Li, and jS4i ¼ j1L; 1Li. The independent
unitary transformations on each qubit, SUð2ÞS ⊗ SUð2ÞT ,
and the controlled-NOT gate, which leads to quantum
entangled states [40], can be implemented in the two-qubit
subspace Hsub by using the spin-mode and mode-number
operators. Furthermore, these transformations can be physi-
cally realized by applying oscillating magnetic fields. (See
Supplemental Material [3] Sec. 4 for details).
Summary—In this Letter, we have shown that a spin-1=2

nucleus of 19F in C6F6 exhibits an extra resonance corre-
sponding to the emergence of the multiplexed quantum
states due to the mechanical rotation. These results indicate
that one can run two-qubit quantum operations on a single
spin 1=2 at a time, providing a new approach to quan-
tum information science and technology. By using a more
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elaborated combination of rotations, such as the double
rotor around two rotation axes with different angular
velocity [41], further multiplexing of spin states associated
with the two rotation frequencies might be possible. More-
over, utilizing the similarity between the algebra of the
spin-mode operators [Eq. (3)] and the planar rotor algebra,
many qubits can be encoded in the infinite-dimensional
extended Hilbert space [42]. Not only the mechanical
rotation but similar multiplexing can also be expected
when a spin is exposed to two effective magnetic fields with
different directions and one of them is moving slowly. The
observed effect will thus be a universal and powerful
principle for breeding quantum states in condensed matter.
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