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Symmetry imposes constraints on open quantum systems, affecting the dissipative properties in
nonequilibrium processes. Superradiance is a typical example in which the decay rate of the system is
enhanced via a collective system-bath coupling that respects permutation symmetry. Such a model has also
been applied to heat engines. However, a generic framework that addresses the impact of symmetry in
finite-time thermodynamics is not well established. Here, we show a symmetry-based framework that
describes the fundamental limit of collective enhancement in finite-time thermodynamics. Specifically, we
derive a general upper bound on the average jump rate, which quantifies the fundamental speed set by
thermodynamic speed limits and trade-off relations. We identify the symmetry condition that achieves the
obtained bound, and explicitly construct an open quantum system model that goes beyond the enhancement
realized by the conventional superradiance model.
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Introduction—Symmetry plays a fundamental role in
physics, as it provides a powerful tool to analyze, classify,
and design the system of interest, and imposes constraints
on physical systems such as superselection rules, charge
conservations, and so forth. Realistic systems are unavoid-
ably open to their surrounding degrees of freedom, and
hence recent studies [1–6] aim to understand the impact of
symmetry in open quantum systems. Consequently, discus-
sions based on the symmetry of the Hamiltonian have been
extended to those based on non-Hermitian Hamiltonians
[7,8] andGorini-Kossakowski-Sudarshan-Lindblad (GKSL)
master equations [9–11]. Symmetry is also related to top-
ology [3–6], degeneracies [12], conserved quantities [2],
decoherence-free subspaces, and noiseless subsystems [13],
crucial for condensed matter physics and quantum informa-
tion science.
Symmetry affects not only the equilibrium or steady-state

properties of the system, but also the speed and dissipative
properties in finite-time and nonequilibrium processes.
When we consider permutation-invariant N identical two-
level systems, the decay rate can be enhanced by a factor of
N via collective system-bath coupling effects, termed super-
radiance [14,15]. This example implies that symmetry is
strongly connected to the notion of collective advantages,
which have been extensively studied in the context of
quantum thermodynamics, including setups such as heat
engines [16–23], quantum batteries [24–26], information

erasure protocols [27,28], and photocells [29]. It is therefore
expected that designing quantum devices that respect
symmetry leads to the suppression of unwanted energetic
costs, crucial for charge transport dynamics and quantum
information processing protocols. However, a general
framework that addresses the influence of symmetry in
finite-time and nonequilibrium thermodynamic processes
has not been well established.
To develop a general theory to describe the impact of

symmetry in finite-time thermodynamics, we pay attention
to the thermodynamic speed limit inequalities [30–32]
and trade-off relations [20,33], which set generic upper
bounds on the speed of state transformation and the change
of the expectation values of physical quantities in open
quantum systems. These relations indicate that increasing
the average jump rate allows having smaller energetic
costs (entropy production) while fixing the duration of the
process (see Fig. 1). Therefore, investigation of symmetry
in thermodynamic trade-off relations provides a unified
approach to understanding collective advantages in quan-
tum thermodynamics. Moreover, in view of the close
relation between degeneracy and symmetry [12,13], such
investigation allows symmetry-based understanding of the
effect of degeneracy and coherence on quantum thermo-
dynamics [20].
In this Letter, we develop a generic framework describ-

ing the fundamental limit of symmetry-based enhancement
in finite-time thermodynamics (see Fig. 1). Specifically, we
derive a general upper bound on the average jump rate,
showing that the number of degeneracy sets the maximum*Contact author: funo@ap.t.u-tokyo.ac.jp
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enhancement.We also derive the symmetry condition on the
quantum state and the jump operators that saturates the
obtained bound. As an application, we consider a permu-
tation-invariantN two-level systems, and discuss the scaling
behavior of the power and efficiency of heat engines, based
on the power-efficiency trade-off relation [20]. The obtained
theory predicts the possibility of realizing a heat engine that
operates near the Carnot efficiency as η ¼ ηCar −Oð1=NÞ,
while producing the power that scales from OðN2Þ to
exponential, which goes beyond the scaling realized by
the superradiant heat engine models [17,18].
Setup—We assume that the system of interest is inter-

acting with a heat bath. The interaction Hamiltonian reads
Hint ¼

P
a Sa ⊗ Ba, where Sa and Ba are Hermitian

operators of the system and the bath, respectively. We
describe the reduced dynamics of the system by consid-
ering a weak coupling and Born-Markov-secular approx-
imations. Following the standard derivation under these
conditions, we obtain the GKSL form of the master
equation [9–11] (we take ℏ ¼ 1)

∂tρ ¼ Lρ ¼ −i½H; ρ� þ
X
a;ω

γa;ωD½La;ω�ρ; ð1Þ

where D½L�ρ ¼ LρL† − ð1=2ÞfL†L; ρg is the dissipator,
γa;ω is the decay rate, and La;ω ¼ P

ω¼ϵk−ϵl ΠlSaΠk is the
Lindblad jump operator that let the system jump from one
energy eigenstate to another with their energy difference
equal to ω. Here, Πk is the projection to the kth energy
eigenspace Sk, and ϵk is the kth energy eigenvalue, i.e.,
H ¼ P

k ϵkΠk. We denoteN k ¼ dimðΠkÞ as the number of
degeneracy of the kth energy.We further assume the detailed
balance condition γa;−ω ¼ γa;ωe−βω to make Eq. (1) thermo-
dynamically consistent, where β is the inverse temperature
of the heat bath.
One of the main objectives in the field of stochastic

thermodynamics is to minimize the entropy production in
finite-time processes [34–38]. To this end, we focus on the

activity [30,39] Aact ¼
P

ω Aω and an activity-like quantity
A ¼ P

ω ω
2Aω, where

Aωðρ; La;ωÞ ¼
X
a

γa;ωTr½L†
a;ωLa;ωρ�; ð2Þ

is the average jump rate with fixed transition energy ω.
Note that these quantities set a timescale of the system and
play a fundamental role in stochastic thermodynamics.
Specifically, the current-dissipation trade-off relation reads
2J2=σ̇ ≤ A, where J is the heat current, σ̇ is the entropy
production rate [20,33,40]. This trade-off bound is achiev-
able in specific examples [20]. Therefore, suppressing the
entropy production while producing a large heat current
becomes possible when the value of A is increased
(see Fig. 1).
Moreover, Aω quantifies the transition rate from a kth

energy eigenstate jψki to a lth energy eigenstate jψ li, given
by

P
a;ω γa;ωjhψ ljLa;ωjψkij2¼Aϵk−ϵlðjψkihψkjÞ. Therefore,

having a large Aω allows increasing the emission of
photons to the environment, with the possibility of realizing
the enhancement that goes beyond superradiance.
Symmetry—In what follows, we develop a symmetry-

based theory that quantifies the limit of the enhancement of
Aω. To this end, we introduce a symmetry group G and
assume that the Hamiltonian H is invariant under this
group: ½H;Vg� ¼ 0 for all g∈G, where Vg is a unitary
representation of the group. We then classify quantum
states and jump operators based on Vg, which constitutes
the core of our analysis. We assume in the main text that we
take appropriate G and Vg whose precise condition is given
in Appendix A, such that the symmetry represented by Vg

perfectly characterizes the structure of the energy eigens-
paces of H. Note that the examples that we discuss later
satisfy this condition. On the other hand, the above
condition is not satisfied when G does not represent
all the symmetry of the Hamiltonian H, e.g., by choosing
G as a trivial group, or by only choosing G as the
permutation group for the permutation and even number
bit-flip invariant system considered in example 2. In
Appendix B, we generalize our results to any choice of
G and Vg. In particular, the main result (9) is still valid, but
the bound is no longer achievable in general; we thus
further derive an achievable bound on Aω.
We point out that Aωðρ; La;ωÞ ¼

P
k pkAωðρk; La;ωÞ,

where pk ¼ Tr½Πkρ�, and ρk ¼ ΠkρΠk=pk. This relation
motivates us to characterize quantum states ρ by their
properties of ρk acting on Sk. We now introduce following
two special classes of quantum states based on Vg:
(i) Local states ρlock , defined by

1

jGj
X
g∈G

Vgρ
loc
k V†

g ¼ 1

N k
Πk: ð3Þ

FIG. 1. Schematic picture of the current-dissipation trade-off
relation 2J2=σ̇ ≤ A [20], where J is the heat current and σ̇ is the
entropy production rate. When the open system dynamics
respects certain type of symmetry, the upper bound A can be
enhanced (see Fig. 2), and thus higher values of the ratio J2=σ̇ can
be realized. We derive the fundamental limit of this enhancement
[see Eq. (9)].
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This definition means that by randomly mixing a local state
by unitary operators Vg, it gets completely mixed and
becomes themaximallymixed state inSk.We also introduce

the local energy eigenbasis Bloc
k ¼ fjψ loc

k ðαÞigN k
α¼1 for Sk,

where each element of Bloc
k satisfies Eq. (3).

(ii) Symmetric states ρsymk , defined by

Vgρ
sym
k ¼ ρsymk V†

g ¼ ρsymk for all g: ð4Þ

This definition means that symmetric states do not change
by the action of Vg.
Next, we consider the symmetry-based classification of

jump operators. To this end, we introduce the following
covariant condition (so-called weak symmetry condition)
for the LiouvillianLðVgxV

†
gÞ ¼ VgLðxÞV†

g for any operator
x and for all g∈G [1]. This condition imposes the
Liouvillian L to preserve symmetry. Now, we introduce
two special types of the jump operators:
(i) Local jump operators fLloc

a;ωg, defined by

�ðLloc
a;ωÞ†Lloc

a;ω; jψ loc
k ðαÞihψ loc

k ðαÞj� ¼ 0 for all α: ð5Þ

Therefore, local jump operators do not create coherence
between local states jψ loc

k ðαÞi and jψ loc
k ðα0Þi.

(ii) Symmetric jump operators fLsym
a;ω g, defined by

VgL
sym
a;ω ¼ Lsym

a;ωV
†
g ¼ Lsym

a;ω for all g: ð6Þ

Similar to symmetric states, symmetric jump operator do
not change by the action of Vg.
To see why we call fLloc

a;ωg and fjψ loc
k ðαÞig as local, let

us consider a permutation-invariant, N identical two-level
systems discussed in example 1. We then find that
jψ loc

k i ¼ jei⊗k ⊗ jgi⊗N−k ∈Bloc
k , where jgi and jei denote

the ground and excited states of individual two-level systems.
This state jψ loc

k i is “local” in the sense that it is a tensor
product of individual two-level states, and does not have
superpositions amongdifferent subsystems.We also note that
the jump operators fσ−i gNi¼1 satisfy Eq. (5), where σ−i is the
lowering operator that acts “locally” on the ith subsystem.
With these in mind, we also call ρlock and Lloc

a;ω as local
quantum states and local jump operators in generic situations.
In what follows, we utilize the above classification of the

quantum states and jump operators and derive general
properties of Aω, including its upper bound.
No enhancement condition—First, we show in the

Supplemental Material [41] that

Aωðρloc; fLa;ωgÞ ¼
X
k

pkckðLa;ωÞ; ð7Þ

Aωðρ; fLloc
a;ωgÞ ¼

X
k

pkckðLloc
a;ωÞ; ð8Þ

where ckðLa;ωÞ ¼ N −1
k

P
a γa;ωTr½ΠkL

†
a;ωLa;ωΠk� is the

square of the Hilbert-Schmidt norm of the jump operators
acting on the subspace Sk divided by its dimension, and
ρloc ¼ P

k pkρ
loc
k . Note that if we consider a trivial rescal-

ing
ffiffiffiffiffiffiffiffi
γa;ω

p
La;ω →

ffiffiffiffiffiffiffiffiffiffiffi
Cγa;ω

p
La;ω, the average jump rate is

rescaled as Aω → CAω, where C is a constant. Therefore, it
would be reasonable to analyze the amount of Aω in units of
some norm of the jump operators, and we have therefore
introduced ckðLa;ωÞ. Equations (7) and (8) show that the
norm of the jump operators ckðLa;ωÞ sets the value of Aω if
at least one of the state and jump operator is local.
Maximum enhancement condition—We now analyze to

what extent Aω can be enhanced. In the Supplemental
Material [41], we show a general upper bound on Aω, for
any densitymatrixρ and jumpoperatorsfLa;ωg, expressed as

Aωðρ; fLa;ωgÞ ≤
X
k

pkN kckðLa;ωÞ; ð9Þ

showing thatAω can be enhanced up toN k times the norm of
jump operators ck for each kth subspace. The equality
condition in (9) is achieved by a combination of symmetric
states and jump operators, given by

Aωðρsym; fLsym
a;ω gÞ ¼

X
k

pkN kckðLsym
a;ω Þ; ð10Þ

where ρsym ¼ P
k pkρ

sym
k . See Table I for the summary of the

scaling of Aω for different states and jump operators.
In what follows, we show specific examples and con-

struct jump operators that realize better scaling of Aω

compared to the superradiance model. We also show that
such jump operators allow enhancing the output power and
efficiency of heat engines.
Example 1: Permutation invariance—We now apply our

results to a permutation-invariant model. Let the system
Hamiltonian be N identical two-level systems H ¼
ðω0=2Þ

P
N
i¼1 σ

z
i , where σzi is the z component of the

Pauli matrix for the ith system. This Hamiltonian is
invariant under interchange of subsystem labels i, and is
thus invariant under the permutation group SN . One

TABLE I. Classification of the enhancement of Aω. If either the
state or the jump operator is local, Aω is given by ck, and cannot
be enhanced [see Eqs. (7) and (8)]. If both the state and the jump
operator are symmetric, Aω is maximally enhanced, characterized
by the number of degeneracy N k [see Eq. (10)].

Local jump
operator fLloc

a;ωg
Symmetric jump
operator fLsym

a;ω g
Local
state ρlock

ckðLloc
a;ωÞ ckðLsym

a;ω Þ
(no enhancement)

Symmetric
state ρsymk

ckðLloc
a;ωÞ

(no enhancement)
N kckðLsym

a;ω Þ
(maximum enhancement)
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example of the local state is given by jψ loc
k i ¼

jei⊗k ⊗ jgi⊗N−k, representing the state with k “local”
excitations of the two-level systems. On the other hand,
the symmetric state ρsymk ¼ jψ sym

k ihψ sym
k j is given by the

symmetric Dicke state jψ sym
k i ¼ N −1=2

k

P
g Vgjψ loc

k i, where
N k ¼ NCk is the number of degeneracy.
In what follows, we demonstrate the obtained results by

explicitly calculating Aω0
ðρsymk ; La;ω0

Þ for different jump
operators La;ω0

that removes one excitation from the
system. For mixed states ρsym ¼ P

k pkρ
sym
k , the scaling

of Aω is simply given by the linear combinationP
k pkAω0

ðρsymk ; La;ω0
Þ. Note that the case of adding one

excitation to the system (ω ¼ −ω0) can be similarly
obtained by using the jump operators La;−ω0

¼ L†
a;ω0

. In
the following, we set γa;ω0

¼ γ↓.
The symmetric jump operator (6) is given by

Lsym
ω0

¼
X⌈N=2⌉−1

m¼0

LðmÞ
ω0

; ð11Þ

where LðmÞ
ω0

¼ P
σ−i1 � � � σ−imþ1

σþl1 � � � σþlm and the summation
is taken over ði1 < � � � < imþ1Þ ≠ ðl1 < � � � < lmÞ, and ⌈ • ⌉
is the ceiling function. We note that LðmÞ

ω0
includes all

possible combinations of 2mþ 1-body jump operators that
remove one excitation from the system. Using Eq. (11), we
find that Aω0

ðρsymk ; Lsym
ω0

Þ ¼ N kck, with ck ¼ NCk−1γ↓.
When k ¼ ⌈N=2⌉, we use Stirling’s formula and obtain
N N=2 ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðπNÞp

2N , showing an exponential scaling (see
also Fig. 2).
Note that Eq. (11) consists of many-body system

operators, which makes it challenging to realize the above
optimal scaling in practice. In the following, we therefore
approximate Eq. (11) by taking the first 2nþ 1-body

terms L2nþ1-ap
ω0

¼ P
n
m¼0 L

ðmÞ
ω0

and analyze the scaling of
the average jump rate. In particular, the one-body
approximation reproduces the collective jump operator
L1-ap
ω0

¼ P
N
i¼1 σ

−
i , which is used in the study of super-

radiance [14]. The jump operator L1-ap
ω0

satisfies strong
symmetry [1] ½L1-ap

ω0
; Vg� ¼ 0, but does not satisfy Eq. (6).

The scaling reads Aω0
ðρsymk ; L1-ap

ω0
Þ ¼ ðN − kþ 1Þck with

ck ¼ kγ↓. By considering the next order term L3-ap
ω0

, we find

thatAω0
ðρsymk ;L3-ap

ω0
Þ¼ ðN−kþ1Þ½1þðN−kÞðk−1Þ=2�ck,

with ck ¼ k½1 þ ðN − kÞðk − 1Þðk − 2Þ=2�γ↓. When
k ¼ ⌈N=2⌉, Aω0

=ck scales OðN3Þ, compared to the case
of OðNÞ scaling for the conventional superradiance model
(see Fig. 2).
Finally, we consider local jump operators fσ−i gNi¼1. This

set of jump operators satisfies the weak symmetry, but does
not satisfy the strong symmetry nor Eq. (6). We find that
Aω0

¼ ck ¼ kγ↓, consistent with Eq. (8).

Application of example 1 to heat engines—We apply the
permutation-invariant model to the analysis of heat engines.
The output power P and the heat-to-work conversion
efficiency η of the heat engines satisfy the power-efficiency
trade-off relation [20,33]

P
ηCar − η

≤ cĀ; ð12Þ

where ηCar ¼ 1 − βH=βC is the Carnot efficiency; βH
and βC are the inverse temperatures of the hot and cold
baths; c ¼ βCηCar=½2ð2 − ηCarÞ2� is a constant; and Ā ¼
τ−1

R
τ
0 dt

P
ω ω

2Aω, where τ is the duration of time to
complete one engine cycle.
We consider a finite-time quantum Otto heat engine

using the jump operators L1-ap
�ω0

, L3-ap
�ω0

, and Lsym
�ω0

(see the
Supplemental Material [41] for details). Because of the
strong symmetry ½H;Vg� ¼ ½La;ω; Vg� ¼ 0, if the initial
state is prepared by ρsymð0Þ ¼ P

k pkð0Þρsymk , the density
matrix at later times remains in the same symmetric Dicke
subspace spanned by jψ sym

k i, and generically takes the form
ρðtÞ ¼ P

k pkðtÞρsymk . Therefore, the scaling of Aω dis-
cussed in the previous section can be directly applied to
investigate the scalings of power and efficiency as follows
(see also Appendix C).
We choose a protocol such that the efficiency asymp-

totically reaches the Carnot efficiency as η ¼ ηCar − b=N,
where b is a constant [see Fig. 3(a)]. In Fig. 3(b), we show a
numerical plot of the output power. The green curve shows
the superradiant heat engine setup [17], where the jump
operators are given by L1-ap

�ω0
. An analytical calculation

shows Ā ¼ OðNÞ, and combined with Eq. (12), the power
is expected to scale Oð1Þ, which is consistent with the

FIG. 2. Plot of Aω0
ðρsymk ; La;ω0

Þ=ck for a permutation-invariant
N two-level systems model. We plot the case k ¼ ⌈N=2⌉, i.e.,
half of the two-level systems are excited. The red curve is
obtained by using the symmetric jump operator Lsym

ω0
, demon-

strating the optimal enhancement of Aω0
. The blue curve is

obtained by using L3-ap
ω0

, showingOðN3Þ scaling. The green curve
is obtained by using the conventional collective jump operator
L1-ap
ω0

¼ P
i σ

−
i in the analysis of superradiance, showing OðNÞ

scaling. The orange line is obtained by using local jump operators
fσ−i g, demonstrating Aω0

=ck ¼ 1.
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numerical plot. If we instead consider L3-ap
�ω0

, a similar
analysis implies that the power scales OðN2Þ. By further
considering Lsym

�ω0
, we find an exponential scaling of the

power (see Fig. 3).
Example 2: Permutation and even bit flip invariance—

We next apply our results to a permutation and even
number bit flip (e.g., Vg ¼ σxi σ

x
j ) invariant system. The

Hamiltonian reads H ¼ ϵ
Q

N
i¼1 σ

z
i . When N ¼ 4, this

Hamiltonian appears in the Kitaev’s toric code model as
one of the stabilizer operators [49]. The eigenenergies
and the number of degeneracies are given by �ϵ and
N �ϵ ¼ 2N−1, respectively. The symmetric state reads
jψ sym

�ϵ i ¼ ðjþi⊗N � j−i⊗NÞ= ffiffiffi
2

p
, where j�i ¼ ðjei � jgiÞ=ffiffiffi

2
p

. The symmetric jump operator reads

Lsym
2ϵ ¼

X⌈N=2⌉−1

m¼0

X
i1<���<i2mþ1

Π−ϵσ
x
i1
� � � σxi2mþ1

Πϵ: ð13Þ

Using Eq. (13), we obtain A2ϵðjψ sym
ϵ ihψ sym

ϵ j; Lsym
2ϵ Þ ¼ N ϵcϵ

with cϵ ¼ N ϵγ↓, consistent with Eq. (10). This scaling
behavior allows us to construct a heat engine model that
achieves ηCar − η ¼ Oð1=N ϵÞ and P ¼ OðN ϵÞ discussed
in Ref. [20].
Conclusion—We have shown that the number of degen-

eracy sets a general upper bound on the average jump rate,
and derived a symmetry condition on the quantum states
and jump operators that saturates the obtained bound. The
obtained results clarify the effect of symmetry in finite-time
thermodynamic trade-off relations. As an application, we
consider a quantum heat engine composed of permutation
invariant N two-level systems. In contrast to the conven-
tional superradiant heat engine model [17,18], we obtained
from OðN2Þ to exponential enhancement of the output

power by designing the jump operators that better respects
the obtained symmetry condition.
An interesting future direction is to generalize the

obtained framework to generic situations, for example,
when the detailed balance is violated [50], the system
dynamics is generically non-Markovian [51,52], and there
are nonreciprocal interactions [53,54]. The theoretical
framework developed in this Letter is anticipated to lead
not only to designing high-performance heat engines but
also to realizing fast and energy-efficient information
processing devices and charge transport devices.
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Appendix A: Details on the choice of G and Vg
assumed in the main text—In this Appendix, we show
technical details on the appropriate choice of G and Vg

assumed in the main text. We again note that the main
result (9) can be generalized to arbitrary G and Vg, as
shown in Appendix B.
To begin with, we note that the commutation relation

½Vg;H� ¼ 0 implies ½Vg;Πk� ¼ 0. Then, Vg can be decom-
posed as Vg ¼ ⨁kV

k
g, where Vk

g acts on Sk. Each Vk
g is

further decomposed into irreducible representations as
Vk
g ¼ ⨁jIHk

j
⊗ Vk

jðgÞ, where Sk is decomposed as Sk ¼
⨁jH

k
j ⊗ Kk

j , V
k
jðgÞ is an irreducible representation of G

acting on the subspace Kk
j , IHk

j
is the identity matrix acting

on the subspaceHk
j , and j labels irreducible representations

[22,55,56]. Here, a representation Vk
jðgÞ of G acting on Kk

j

is called irreducible if Kk
j has no nontrivial subspace that is

invariant under the action of Vk
jðgÞ for all g. Therefore, the

subspaceHk
j is invariant under the operation of V

k
g, and Kk

j

is the only subspace in which Vk
g nontrivially acts on. When

there exist ðj; kÞ such that dimðHk
jÞ ≥ 2, the symmetry

represented by Vg does not perfectly characterize the
structure of the energy eigenspaces of H, due to these
invariant subspaces. Fortunately, for a given H, we can
always take appropriateG andVg that satisfies dimðHk

jÞ¼ 1

for any j and k (see the Supplemental Material [41]). We
also note that the examples we discuss in the main text
satisfy the condition dimðHk

jÞ ¼ 1 for any j and k for
natural G and Vg. Therefore, in the main text, we assume
that we take appropriate G and Vg that satisfy dimðHk

jÞ ¼ 1

for any j and k. In Appendix B, we discuss the case
dimðHk

jÞ ≥ 2 and generalize the main results.

Appendix B: Generalization to arbitrary G and Vg—
We now show how the main results are generalized to
the case of dimðHk

jÞ ≥ 2, i.e., arbitrary G and Vg. To
begin with, we introduce operators σj;k and Bω

j;k acting
on the subspace Hk

j to parametrize quantum states and

jump operators as

½ρk�inv ¼
1P

jTr½σj;k�
⨁
j
σj;k ⊗

IKk
j

dimðKk
jÞ
; ðB1Þ

�X
a

γa;ωL
†
a;ωLa;ω

�
inv

¼ ⨁
k;j

Bω
j;k ⊗

IKk
j

dimðKk
jÞ
; ðB2Þ

where ½X�inv ≔ jGj−1Pg∈G VgXV
†
g. We again note that

when dimðHk
jÞ ≥ 2, Hk

j is a nontrivial invariant subspace
under the action of Vg, and the specific form of σj;k
and Bω

j;k cannot be constrained based on the symmetry
conditions for given G and Vg. Nevertheless, a general
upper bound on the average jump rate can be derived as
(see Supplemental Material [41] for details)

Aωðρ; fLa;ωgÞ ≤
X
k

pkN kckðLa;ωÞFðσj;k; Bω
j;kÞ

≤
X
k

pkN kckðLa;ωÞ; ðB3Þ

where

Fðσj;k; Bω
j;kÞ ¼

P
jTr½σj;kBω

j;k�P
jTr½σj;k�

P
jTr½Bω

j;k�
≤ 1; ðB4Þ

quantifies the overlap between fσj;kgj and fBω
j;kgj. The

obtained relation (B3) generalizes the result Eq. (9) to
the case of dimðHk

jÞ ≥ 2. It should be noted that the
bound (9) remains valid in this general case; however,
the last equality condition in (B3) can no longer be
characterized by the properties of Vg. On the other hand,
the first inequality in (B3) is achievable by using
symmetric states and jump operators (see Supplemental
Material [41] for details)
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Aωðρsym; fLsym
a;ω gÞ ¼

X
k

pkN kckðLsym
a;ω ÞFðσsymj;k ; Bsym;ω

j;k Þ:

ðB5Þ

As shown in Eqs. (10) and (B5), symmetric states and
jump operators achieve the upper bound of the enhance-
ment of Aω. It should be noted that the existence of
symmetric states and jump operators requires condition
dimðKk

jÞ ¼ 1 for one j, which we denote as jsym; note that
σsymj;k ¼ Bsym;ω

j;k ¼ 0 for j ≠ jsym is satisfied for symmetric

states and jump operators. This condition dimðKk
jsym

Þ ¼ 1

is not necessarily satisfied for arbitrary G and Vg.
Therefore, this condition dimðKk

jsym
Þ ¼ 1 can be viewed

as a design principle of the Hamiltonian and jump
operators to achieve the maximum enhancement of Aω.
Note that the examples that we discuss in the main
text satisfy this condition. We also note that when
dimðHk

jÞ ¼ 1, ρsymk is unique (if it exists) and can be
written as ρsymk ¼ jψ sym

k ihψ sym
k j, where jψ sym

k i is defined by
Vgjψ sym

k i ¼ jψ sym
k i for all g.

Appendix C: Scaling of A—Because the density matrix
during a heat engine cycle is generically given by a
mixed state, here we consider the model discussed in
example 1 and show an additional plot that demonstrates
the scaling of A for ρsymth ¼ P

k p
th
k ρ

sym
k , where pth

k ¼
e−kβω0=

P
N
k¼0 e

−βkω0 is the thermal occupation probability
of the kth energy eigenstate. Here, we consider the
following master equation

∂tρ ¼ −i½H; ρ� þ γ↓D½Lω0
�ρþ γ↑D½L†

ω0
�ρ; ðC1Þ

where Lω0
¼ fL1-ap

ω0
; L3-ap

ω0
; Lsym

ω0
g, L†

ω0
¼ L−ω0

, γ↓ ¼ Γ0=
ð1þ e−βω0Þ and γ↑ ¼ Γ0=ð1þ eβω0Þ satisfy the detailed
balance condition γ↓=γ↑ ¼ eβω0 . Note that ρsymth is the
steady state of Eq. (C1) when the initial state is prepared
in the symmetric Dicke subspace [e.g., ρsymð0Þ ¼P

k pkð0Þρsymk ], because L1-ap
�ω0

, L3-ap
�ω0

, and Lsym
�ω0

satisfy the
strong symmetry condition. In Fig. 4, we plot A ¼P

ω¼�ω0
ω2Aωðρsymth ; LωÞ, where its analytical expression,

including the scaling of A¼OðNÞ for L1-ap
�ω0

and

A ¼ OðN3Þ for L3-ap
�ω0

is obtained in the Supplemental
Material [41]. From Fig. 4, we also find that A scales
exponentially for Lsym

�ω0
.

FIG. 4. Scaling of A for different jump operators when the
density matrix is given by ρsymth . The green, blue, and red curves
are calculated by using L1-ap

�ω0
, L3-ap

�ω0
, and Lsym

�ω0
, respectively. See

also the Supplemental Material [41] for further details of the
scaling of A. The parameters are ω0 ¼ 0.7, β ¼ 5.
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