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Like the letters in the alphabet forming words, reusing components of a heterogeneous mixture is an
efficient strategy for assembling a large number of target structures. Examples range from synthetic DNA
origami to proteins self-assembling into complexes. The standard self-assembly paradigm views target
structures as free-energy minima of a mixture. While this is an appealing picture, at high speed structures
may be kinetically trapped in local minima, reducing self-assembly accuracy. How then can high speed,
high accuracy, and combinatorial usage of components coexist? We propose to reconcile these three
concepts not by avoiding kinetic traps, but by exploiting them to encode target structures. This can be
achieved by sculpting the kinetic pathways of the mixture, instead of its free-energy landscape. We
formalize these ideas in a minimal toy model, for which we analytically estimate the encoding capacity and
kinetic characteristics, in agreement with simulations. Our results may be generalized to other soft-matter
systems capable of computation, such as liquid mixtures or elastic networks, and pave the way for high-
dimensional information processing far from equilibrium.
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Introduction—The combinatorial usage of different com-
ponents is a prevalent biological strategy to encode
information. For example, in the cytoplasm, proteins
accurately self-assemble into complexes that share proteins
with one another [1,2]. This notion has also permeated
nanotechnology [3,4], where the same set of DNA tiles can
be reused to reliably self-assemble multiple structures [5].
Besides reusability and high accuracy, a fundamental
property of biological self-assembly is high speed, which
allows cellular adaptation to quickly changing conditions.
This motivates the fundamental question of how self-
assembly with reusable components can occur quickly
and accurately.
The standard approach to combinatorial self-assembly

encodes target structures as minima of the mixture’s free-
energy landscape [6–8]. While never explicitly mentioned,
this approach is subject to a speed-accuracy trade-off
[9,10]: self-assembly of targets is accurate when the
mixture can relax to target minima in near-equilibrium
conditions. Far from equilibrium, as required for high
speed, free-energy encoding results in undesired structures
trapping the kinetics. To reconcile self-assembly speed,
accuracy, and reusability we propose an alternative encod-
ing approach: tuning the kinetics of the pathways leading to
target structures. In this approach, kinetic traps, normally
understood as deleterious [11–14], can be exploited to
encode information that is accessible far from equilibrium
and at high speed [15–18]. While tuning the kinetics of
different binding partners is a well-established mechanism

for discrimination in copolymerization processes [10,19],
its role in self-assembly remains understudied.
In this Letter, we model the dynamics of a self-

assembling heteropolymer in contact with a reservoir of
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FIG. 1. Schematics of kinetic encoding setup. (a) A hetero-
geneous mixture of Ntot monomer species is designed to self-
assemble S different target strings of size L and containing N
different components, which results in combinatorial usage of
components. (b) A polymer grows by adding or removing
monomers at its tip with rates kþi and k− that depend on the
composition of the n components of the polymer tip. (c) When
multiple targets are encoded, different nucleation seeds should
retrieve different targets. Retrieval is hampered by errors due to
the reusability of components (first error) or thermal fluctuations
(second error). (d) In kinetic encoding there is no free-energy
difference between different strings of the same size. Instead, the
pathway to the target is differentiated by kinetics.
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multiple different component species. We show how a large
number of target strings can be encoded kinetically, such
that accurate self-assembly of any of them will occur at
high speed. Furthermore, we analytically calculate and
numerically confirm the scaling of the maximum number of
structures that a mixture can kinetically encode, the
characteristic lifetime of targets, and the dependence of
our results on the heterogeneity of targets and their usage of
components.
Model setup—We consider a mixture of Ntot different

monomer species; see Fig. 1(a), labeled i ¼ 1;…; Ntot, that
are kept at fixed chemical potentials, μi ¼ μ, and temper-
ature, T (hereafter kBT ¼ 1, with kB Boltzmann’s con-
stant). We are interested in conditions under which the
mixture can self-assemble any of S different target strings,
labeled α ¼ 1;…; S, that are defined through composition
vectors cα ¼ fiα1; iα2;…; iαLg, with L the length (equal for all
targets). Each target contains N ≤ Ntot different monomer
species, and is thus characterized by its usage of the
mixture, u ¼ N=Ntot ≤ 1, and its compositional hetero-
geneity, h ¼ N=L ≤ 1. The reusability of components,
within and across strings, allows for a combinatorial
expansion of the mixture.
We study the dynamics of a heteropolymer that grows by

adding and removing monomers of the mixture at its distal
end; see Figs. 1(b)–1(d). The polymer in question is
characterized by its composition vector fi1; i2;…; ilg, with
l the time-varying length. The addition and removal of
monomers depends on the composition of the polymer tip,
tn ¼ filþ1−n;…; ilg, with n ≥ 1 the length of the tip, i.e.,
the range of interactions. We denote the addition rate of a
monomer from species i as kþi ðtnÞ, and the removal rate of
monomer il as k−ðtnþ1Þ. Note that the case n ¼ 1
corresponds to nearest-neighbor coupling among mono-
mers, n ¼ 2 to next-nearest-neighbor, etc. Within this
setup, our goal is to propose a choice of rates that allows
polymerization of target strings reliably and fast.
To ensure fast retrieval of targets, we encode their

compositions in the binding kinetics, rather than in the
energetics, of the mixture components. Therefore, consid-
ering the binding of component i to a tip tn and its
subsequent unbinding (from a tip t0nþ1 corresponding to
the previous tip tn to which has been added i), the detailed
balance condition on the rates reduces to

kþi ðtnÞ=k−ðt0nþ1Þ ¼ expðμÞ; ð1Þ
which encodes no information about the targets. The targets
are instead kinetically encoded through the choice of
forward rates,

kþi ðtnÞ ¼ expðriδÞ; ð2Þ
where ri is the number of monomers in the tip tn that are
correctly placed relative to monomer i at location lþ 1 in
any target string cα (see [20] for explicit formula), and δ is a

kinetic discrimination parameter. Note that the rates are
defined up to an irrelevant time unit. As an illustration, for
the simple case n ¼ 1 this rule implies that ri ¼ 1 if the
monomer i to be added is a neighbor of the tip monomer il
in any of the target strings, and ri ¼ 0 otherwise.
Alternatively, in the example of Fig. 1(b) with n ¼ 2,
we have kþDðfR;UgÞ ¼ expð2δÞ due to the target
c1 ¼ fN;E;R;U;D;Ag, but kþZ ðfR;UgÞ ¼ 1. In the fol-
lowing, we study the conditions under which this minimal
model allows accurate and fast retrieval of targets.
Retrieving a target string as a kinetic trap—As a starting

point, we consider that the mixture encodes a single string
(S ¼ 1) that is fully heterogeneous (h ¼ 1) and uses all
components (u ¼ 1, such that L ¼ Ntot ¼ N). In this case,
errors are not due to combinatorial usage of components
[first error in Fig. 1(c)], but instead emerge from thermal
fluctuations [second error in Fig. 1(c)]. At equilibrium, the
chemical potential of the mixture balances the entropic
tendency to grow, and so μeq ¼ − lnN < 0 [9,10,21].
Equation (1) implies that no information is encoded in
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FIG. 2. Fast and accurate retrieval of a single target string. (a)–
(d) Kymographs of polymer dynamics obtained from stochastic
simulations (white codes for empty sites, yellow for components
matching the target string, and shades of gray assembly errors);
see [20] for simulation details. In this and all panels the mixture
encodes a single target (S ¼ 1) that is heterogeneous and uses all
components (L ¼ Ntot ¼ N ¼ 50). The polymer tip size is n ¼ 1
(nearest-neighbor coupling). Depending on the chemical poten-
tial (μ) and discrimination barrier (δ) we identify four different
kinetic regimes. (e) As μ increases, both the accuracy of target
retrieval and the speed increase. The maximal accuracy and
maximal speed (dashed lines) for μ → ∞ both increase with δ. In
particular, the accuracy approaches one for δ > δmin [Eq. (3)].
Here, n ¼ 2 and shades of blue label δ ¼ f4; 6; 12; 14g by
increasing darkness. (f) The timescale of target retrieval (τret)
and the lifetime of a target (τlife) separate for δ > δmin, in
quantitative agreement with Eq. (4). Here again n ¼ 1.
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the binding energies, and so the equilibrium state of the
polymer is fully disordered: for μ ≳ μeq an initially ordered
seed will disassemble in favor of a disordered polymer
[Fig. 2(b)]. This equilibrium state defines a boundary
between a depolymerization regime, where the growth
speed v (defined as the net rate of monomer addition) is
negative, i.e., v < 0 for μ < μeq [Fig. 2(a)], and diffe-
rent growth regimes, for which μ > μeq implies v > 0

[Figs. 2(c) and 2(d)].
Equation (2) establishes that target strings are encoded in

the kinetics, instead of the energetics. Therefore, the
accuracy of retrieval should be maximal when the dynamics
are strongly irreversible [10]. Since in accurate and
irreversible dynamics there is only one possible assembly
pathway, the bound on the driving is raised to μ > 0.
Furthermore, suppressing errors due to the presence of N −
1 confounding monomers at each growth step requires that
the kinetic discrimination barrier, δ, be sufficiently large.
To bound δ, we estimate the error rate perr as the ratio of

the sum of addition rates for all potential erroneous
additions to the addition rate of the correct monomer,
i.e., perr ≈ ðN − 1Þ= expðnδÞ. In the highly irreversible
regime, the probability to retrieve the seeded target can
be estimated as ð1 − perrÞN . For N ≫ 1, a significant
retrieval probability thus requires Nperr ≪ 1. This leads
to a lower bound on the kinetic discrimination parameter

δmin ¼
2

n
lnN: ð3Þ

We distinguish two fast-growth regimes: kinetic disorder
for δ < δmin, in which thermal fluctuations result in
frequent addition errors, i.e., perr ≈ 1 [Fig. 2(c)]; and
kinetic order for δ > δmin, in which a target string is
accurately retrieved, i.e., perr ≈ 0, until a fluctuation desta-
bilizes it [Fig. 2(d)].
Figure 2(e) shows that increasing the driving μ results in

an increase of the growth speed, up to saturation at
v ≈ expðnδÞ, as well as an increase in retrieval accuracy
(defined as the fraction of string length assembled until the
first error). Still, high accuracy is only possible for large
discrimination barriers, in agreement with Eq. (3).
Kinetic encoding implies that targets are not thermody-

namically stable. We can however estimate their kinetic
stability. The time it takes to retrieve a target string, τret, is
obtained by dividing the length of the string, N, by its
growth speed, v, and so τret ≈ N expð−nδÞ. In contrast, the
lifetime of the string, τlife, is given by the time it takes to
add a few incorrect monomers, and so τlife ≈ 1=N.
Therefore, the lifetime of a string relative to its retrieval
time reads

τlife=τret ≈ expðnδÞ=N2; ð4Þ

and so larger discrimination barriers and longer tip sizes
result in more stable strings; see Fig. 2(f). To conclude, we

have shown that the kinetic encoding approach in Eq. (2)
allows for fast and accurate retrieval of a single target string
for strong discrimination far from equilibrium.
Combinatorial encoding far from equilibrium—We now

turn to the case in which the mixture encodes multiple
targets (S > 1) by combinatorially reusing components
across targets [6,8]. In this scenario, errors arise when
one component has as neighbors two different components
in two different targets, making these two targets indis-
tinguishable to the tip of a growing polymer. For example,
in Fig. 1(c) for the state {M,A,R} of the polymer and n ¼ 1

we have that kþI ¼ kþU ¼ expðδÞ, due to {R} appearing both
in c1 ¼ fN;E;R;U;D;Ag and cS ¼ fM;A;R; I;A; Sg,
which can result in the error shown. Such types of errors
cannot be suppressed by increasing δ. Conceptually, if the
mixture encodes many kinetic pathways to different targets,
such pathways may cross, making it likely to retrieve a
chimera (formed by fragments of different target strings)
rather than the seeded target string [Fig. 3(a)]. In Fig. 3(b),
we show two examples of successful and failed retrieval for
a mixture that kinetically encodes multiple target strings.
For the same large positive values of μ and δ, if the number
of stored targets is below a certain maximal value,
S < Smax, retrieval is successful; instead if S > Smax, the
initial seed nucleates fragments from many other different
target strings, yielding a chimeric polymer [6,8].

(a)

(d)

(b)

(c)

FIG. 3. Combinatorial encoding of kinetic pathways.
(a) Reusing components across targets strings can result in
chimeric assemblies, as kinetic pathways will interfere (a kinetic
analogy of crosstalk of multiple minima). (b) To avoid chimeric
strings, the number of target strings S must be smaller than Smax
[Eq. (5)]. Here, Smax ≈ 3, and the two values of S are 2 and 6.
Throughout this figure we usedN ¼ L ¼ Ntot ¼ 50 and μ ¼ 3. In
this panel, δ ¼ 5 and n ¼ 2. (c) The capacity limit increases with
the target size N depending on the monomer connectivity n
according to Eq. (5). (d) Target stability deteriorates with increas-
ing number of target strings S. Here, n ¼ 3, such that Smax ¼ 9.
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What determines the maximum number of target strings,
Smax, that can be accurately assembled from a mixture
via kinetic encoding? To answer this question, we define
the promiscuity of components, π, as the number of speci-
fic interactions of a typical component at each nearest-
neighboring location. For instance, for the targets shown in
Fig. 1(a), monomer {R} interacts with π ¼ 3 different
monomer species at each nearest-neighbor location. A large
promiscuity turns components indistinguishable, irrespec-
tive of δ, hampering the reliability of assembly. The error
rate, perr, thus corresponds to the probability that given a tip
of size n there is ambiguity regarding which component can
be added. For n ¼ 1, we estimate perr ≈ ðπ − 1Þ=π,
whereas for n ≥ 2, the error rate scales as perr ∼ ðπ −
1Þn=Nn−1 (see [20] for derivation). We then impose the
condition Nperr ≪ 1, as in the derivation of Eq. (3),
focusing on the case where all components are used once
in every target (h ¼ u ¼ 1), for which π ≈ S. This yields
Smax ¼ 1 for n ¼ 1, because the error rate,
perr ≈ ðS − 1Þ=S, prevents retrieval of as little as two
targets. For the case n ≥ 2, we obtain

Smax ∼ N1−2=n: ð5Þ

The predicted size scaling goes from Oð1Þ for n ¼ 2, and
thus no combinatorial usage is possible, to OðNÞ for the
fully connected case n ¼ N, akin to neural network
capacity [22]. Therefore, increasing the tip size improves
discrimination, which allows to encode more targets.
Figure 3(c) shows the results of numerical simulations

relating the capacity, Smax, to the number of component
species, N, for different tip sizes, n. As one can see, for
n ¼ 1, 2 no combinatorial usage of components is possible,
whereas for n ¼ 3, 4 the numerical results are in good
agreement with the predictions of Eq. (5). Figure 3(d)
shows how the time of retrieval, τret, and lifetime, τlife,
depend on the kinetic discrimination parameter δ for
different numbers of target strings, S. While τret follows
the behavior derived earlier, τlife is now bounded by
expð−δÞ, because errors are dominated by component
reusability. As S increases, τlife decreases, making struc-
tures more unstable as S approaches the capacity limit,
Smax. Overall, we conclude that kinetic encoding of a
combinatorially large number of components is possible,
with a capacity and stability that agree with our analytical
estimates.
The roles of heterogeneity and usage—We now study the

effect of target heterogeneity, h, and usage of components,
u, on the capacity of the system, Smax. In this general case,
the promiscuity of components is given by π ≈ Su=h for
large heterogeneous targets [20]. Following an argument
analogous to the previous section, i.e., Lperr ≪ 1 with
perr ∼ ðπ − 1Þn=Nn−1

tot , the scaling in Eq. (5) generalizes to

Smax ∼ ðh=uÞ2−1=nL1−2=n; ð6Þ

for n ≥ 2. This expression highlights the role of the target
string length L as a key extensive quantity regulating the
scaling. Equation (6) also shows that increasing hetero-
geneity and reducing usage both result in an increase of the
capacity. The intuition behind this is simple. Increasing
heterogeneity will reduce the reusability of components
within each target. Likewise, reducing the usage of com-
ponents made by each target string reduces the reusability
across targets. Both aspects reduce the promiscuity of
components, thus facilitating that polymerization pathways
of different targets stay separate from each other. Figure 4
shows that our numerical simulations recover the capacity
scaling in Eq. (6). In particular the capacity diverges as the
usage becomes low (u → 0), and reaches a maximum for
fully heterogeneous structures (h ¼ 1). Therefore, high
heterogeneity and low usage of available components
results in increased capacity for kinetic encoding, as
dictated by Eq. (6).
Discussion—Classical self-assembly relies on the stabil-

ity of target structures, which results in a trade-off between
self-assembly speed and accuracy. In contrast, combining
ideas of information thermodynamics [9,10,23] and neuro-
science [22,24], we have shown how self-assembly of
heterogeneous target structures can be performed kineti-
cally. In this approach, higher speed implies higher accu-
racy, breaking the aforementioned trade-off [25,26]. Since
assemblies in this scenario do not correspond to deep
energy minima, but to long-lived kinetic traps, they are only
stable for a finite amount of time.
The concept of kinetic encoding of target structures is

motivated by the self-assembly of large heteromeric protein
complexes, such as the ribosome [27]. It is well established
that specific binding events for these systems are catalyzed
by enzymes lowering the kinetic barrier for binding
[28,29]. The importance of such enzymes, often referred
to as assembly factors, cannot be understated, as their
deletion results in the slowdown of the self-assembly speed
and the accumulation of incomplete structures [28,30]. In

(a) (b)

FIG. 4. Effects of component usage and heterogeneity in
combinatorial encoding. (a) The maximum capacity, Smax,
decreases with increasing usage, u, at fixed length L as predicted
by Eq. (6). (b) Smax increases with increasing heterogeneity, h,
also in quantitative agreement with Eq. (6). In both panels, L ¼
25 for n ¼ 2, and L ¼ 100 for n ¼ 3, 4.
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fact, there are often as many assembly factors as compo-
nents in a given assembly [29,31,32]. In this sense, our
choice of binding rates can be understood as coarse-
graining enzymatic reactions due to assembly factors.
More broadly, both kinetic encoding (as studied here)
and energetic encoding (see Refs. [6–8]) are expected to
play a role. How best to combine them for maximal
efficiency remains an open question; see [20] for additional
discussion details (and Refs. [33–38] therein).
While we have illustrated the concept of kinetic-trap

encoding in a toy model of heteromeric polymerization,
this idea may be adaptable to systems in other branches of
soft-matter physics, which at present all use energetic
interactions to encode target functions. Examples include
self-assembly of structures with more complex geometries
[39,40], programmable liquid phases [41,42], colloidal
self-assembly [43,44], guided self-folding [3,45], or elastic
network models of proteins [46,47]. Since the biophysical
systems that these models aim to describe often operate far
from equilibrium, we expect the generic features of kinetic
encoding here presented will play a central role in explain-
ing how biological matter is capable of complex high-
dimensional information processing.
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