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Experiments have shown that surfactant introduced to a liquid-filled maze can find the solution path. We
reveal how the maze-solving dynamics arise from interactions between the added surfactant and
endogenous surfactant present at the liquid surface. We simulate the dynamics using a nonlinear model
solved with a discrete mimetic scheme on a graph. Endogenous surfactant transforms local spreading into a
nonlocal problem with an omniscient view of the maze geometry, key to the maze-solving dynamics. Our
results offer insight into surfactant-driven transport in complex networks such as lung airways.
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Recent experiments [1] showed that surfactant, made
visible by dye, can “solve” a liquid maze [Fig. 1(a),
Supplemental Movie 1 [2] ]. The surfactant propagates
along the solution path, with little advance into lateral
branches. This phenomenon seems counterintuitive, as no
mechanism appears to draw the surfactant preferentially to
the maze exit: one might expect Marangoni stresses to
spread the surfactant throughout the whole maze. Yet, the
surfactant proceeds with apparent awareness of the whole
geometry. Although no quantitative theory exists, a hypoth-
esis was suggested based on the potential effect of
preexisting “endogenous” surfactant in the maze liquid
[1]. The spread of the “exogenous” (added) surfactant
would be influenced by the endogenous surfactant in a
manner sensitive to the maze geometry. Inspired by these
observations, we investigate the impact of endogenous
surfactant on the spreading of exogenous surfactant on thin
liquid layers confined in asymmetric branching networks.
Whether from natural or contaminant sources, endog-

enous surfactants are usually undetectable a priori but have
macroscopic influence on flow dynamics across numerous
applications [11–16]. Natural endogenous surfactant in

human lungs can affect exogenous surfactant therapies
[17–22] for various diseases, including acute respiratory
distress syndrome (ARDS) [23]. Although efficacy of
surfactant replacement therapy is indisputable for neonatal
respiratory distress syndrome [24–27], there remains
debate for other pathologies [28–31], such as acute respi-
ratory distress syndrome, which has a 40% mortality rate in
the US [32]. To understand mixed results from clinical trials
[28], experimental and theoretical models analyzed physi-
cal, chemical, and biological processes in surfactant trans-
port through branching networks simulating lungs
[21,33,34]. In distal lung airways, where surfactant therapy
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FIG. 1. (a) Photograph of the liquid maze experiment [1]:
surfactant deposited at the inlet finds the solution path with
minimal penetration into lateral branches, as shown by red dye
advected by Marangoni forces. (b) Results from our model (2)
showing the concentration (blue scale) of the surfactant field in
the same geometry; the red front is the exogenous-endogenous
boundary.
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is effective, Marangoni transport dominates gravitational
transport [19,21,35,36]. Endogenous surfactants can affect
therapeutic surfactant transport, preventing it from reaching
distal airways [17–20,22,37,38].
Pulmonary surfactant models have used simplifying

geometric assumptions to reduce analytical, computational,
and experimental difficulties. Single-airway models [22,39]
may suppress crucial dynamics associated with branching
[20,40]. More complex models used aWeibel morphometry
[41], which yields a dichotomous, symmetric, and self-
similar branching network [17–20,35,42,43]; however,
human lungs are asymmetric and highly irregular [44–
46]. Recent models [40,47], which neglected Marangoni
spreading, showed that transport by air flow and gravity in
asymmetric lungs can yield heterogeneity in surfactant
distribution. Themaze experiments of [1] were not designed
to model lung surfactant transport; nevertheless, the two
problems share key physical features. Understanding
surfactant dynamics in mazes can give insight about
heterogeneities affecting surfactant spreading in large com-
plex networks, such as human lungs.
To test the hypothesis that endogenous surfactant explains

the maze-solving behavior of exogenous surfactant [1], and
provide new physical insight, we model surfactant transport
on a thin film confined in a 1D branching network,
replicating the maze geometry from [1]. The experimental
maze consists of a network of grooves in an acrylic substrate,
with larger 20 × 20 mm branches at the inlet and outlet
[Fig. 1(a)]. The large outlet creates an asymmetry in the
geometry. Branches were filled with a 50% milk-cream
mixture, which provides a dense, viscous liquid contrasting
with red tracer dye added at the inlet. The aqueous dye is
soluble in the milk and slightly buoyant, and thus remains
mostly at the surface. A surfactant drop (0.3% w=w soap-
water solution) was deposited at the inlet at t ¼ 0, starting a
Marangoni flow that entrains the dye. Owing to the
solubility of all components, the milk, dye, and surfactant
solution form a single liquid phase. Within 60 s, one of the
red dye fronts, assumed to follow the exogenous surfactant
fronts, reached the outlet through the solution path of length
155 mm (Sec. S1 [2]).
We assume the dynamics are governed by a balance of

viscous and Marangoni stresses, that solubility and dif-
fusion of surfactant are negligible, and that inertia and
interface deformation are negligible, as shown quantita-
tively in [2]. Endogenous and exogenous contributions are
modeled as a single surfactant concentration field Γ. The
axial and vertical coordinates are x and z, t is time, ujs the
surface axial velocity, and γ the surface tension. Variables
are normalized by appropriate physical scales [2], such that,
e.g., 0 ≤ z ≤ 1. The key equations expressing surfactant
conservation and stress balance at the surface are therefore,
in nondimensional variables,

Γt þ ðujsΓÞx ¼ 0; and ð1aÞ

γx ¼ uzjs; ð1bÞ
where subscripts in x, z, t denote partial derivatives, and
uzjs is the viscous stress at the surface. To introduce key
ideas, ignore initially the effect of lateral (y) confinement,
such that to leading order the viscous flow in the interior is
governed by uzz ¼ px. Integrating twice in z and assuming
that the volume flux along the channel is uniformly zero,
such that

R
1
0 udz ¼ 0, one finds the surface velocity ujs ¼

px=6 and viscous stress uzjs ¼ 2px=3. Eliminating px gives
uzjs ¼ 4ujs. The nondimensional surfactant concentration
and surface tension are related by γx ¼ −Γx [2]; substitut-
ing this relation, together with uzjs ¼ 4ujs, into (1b) yields
ujs ¼ − 1

4
Γx. Eliminating ujs in (1a) yields an equation that

only involves Γ,

Γt ¼
1

4
ðΓΓxÞx ≡ 1

8
ðΓ2Þxx: ð2Þ

An alternative derivation of (2), starting from lubrication
theory, is possible [2]. If we include the effect of lateral no-
slip boundaries at y ¼ �W=2, the factor of 1=4 in (2) and
ujs is replaced by a positive coefficient fðWÞ < 1=4,
calculated a priori as a function of W. This factor is a
nonessential time scaling, as we rescale t by experimental
completion time tref ; however, this analysis shows that
narrow channels significantly reduce the surface velocity,
helping to keep the flow within the viscous limit (for [1]
W ≈ 0.94 yielding f ≈ 0.15).
Model (2) is solved numerically in a branching network

simulating the experimental maze topology, illustrated in
Fig. 2. At junctions, we impose continuity of surfactant

Гj
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FIG. 2. Schematic showing how the transport model (2) is
implemented in a maze mimicking the experiment, with the
branch numbering scheme indicated (Fig. S1 [2]). The maze
topology is modeled by a 1D branching network (blue). Along
each edge, the model results are used to advect the exogenous
surfactant fronts (red).
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concentration and flux, while no flux is imposed at dead
ends (Sec. S2 [2]). The dye fronts are computed by
Lagrangian integration of the surface velocity ujs. To
model the initial conditions, we assume that exogenous
surfactant is deposited instantaneously and uniformly at the
inlet at t ¼ 0. The normalized initial concentration is set to
Γ ¼ 1 at the inlet, while the rest of the maze has initial
endogenous surfactant concentration Γ ¼ δ everywhere,
where 0 < δ < 1 is an empirical parameter. The branches
are numbered as illustrated in Fig. 2 (see Ref. [2] for further
details). Branch i of length Li (normalized by the solution
path length) has longitudinal coordinate 0 ≤ xi ≤ Li.
Internal branches have lengths representative of the experi-
ment. The greater width of the inlet (i ¼ 0) and outlet
(i ¼ 37) branches is treated by constructing 1D equiva-
lents. Since the outlet has small variations in concentration,
its length L37 is calculated by dividing its surface area by
the width of an interior branch. The inlet length L0 is
calculated by matching the amount of initial exogenous
surfactant.
We estimate the ratio of endogenous to exogenous

surfactant mass from the equilibrium state of the experi-
ment, as encoded by the ratio of white versus red surface
areas (Sec. S2.4 [2]). To avoid numerical instabilities, care
is taken to regularize the initial surfactant concentration
distribution between the inlet and the first branch (Sec. S2.2
[2]). The time at which the front enters branch 1 is labeled
as t ¼ 0. As noted earlier, in the model, we rescale time so
that the completion time (when the front enters the outlet)
matches the experimental completion time tref up to a
multiplying factor τend chosen between 0.5 ≤ τend ≤ 1.5.
To solve the system of equations of the form (2), coupled

between each of the branches of the maze, we use a mimetic
finite-difference numerical method, which balances fluxes
at junctions to machine precision. Mimetic finite-difference
methods [48–50] use tools from graph theory and discrete
calculus to obtain finite-difference operators that reproduce
desired features of vector calculus operators. As shown in
Fig. 2, we represent the maze as a graph with vertices at
every junction and dead end. Extra vertices are placed
along each edge to refine the discretization. We construct
finite-difference mimetic operators on this graph using the
incidence matrix of the network A, the columns of which
correspond to the vertices of the graph, and the rows of
which correspond to the edges. Each edge is assigned an
orientation directed away from the maze inlet. Components
of A are zero except at vertices where an edge leaves (−1),
and where an edge enters (þ1). Metric information is
encapsulated by the diagonal edge and vertex length
matrices L and V, respectively. Each component of L is
the length of an edge, and each component of V is one half
the sum of lengths of every edge incident to the corre-
sponding vertex—an important nuance ensuring mass
conservation (see Sec. S3.1 [2]). The matrix L−1A is
therefore a finite-difference gradient operator acting on

scalar functions defined on the graph’s vertices, and is
second order accurate at edge midpoints. Likewise,
−V−1AT is a divergence operator acting on functions
defined at edge midpoints, and is second order accurate
at the vertices. The concentration of surfactant at the
vertices of the graph form the components of vector
ΓðtÞ. The system of differential equations of the form
(2) solved on the graph is found by combining gradient and
divergence operators into a Laplacian, and is therefore

dΓ
dt

¼ −
fðWÞ
2

V−1ATL−1AΓ2; ð3Þ

with Γ2 the component-wise square of Γ. This mimetic
finite-difference formulation automatically implements
no-flux boundary conditions for all bounding vertices of
the graph (dead ends), and continuity of concentration and
flux for all junctions within the graph. A semi-implicit
scheme solves this system of equations in time (Sec. S3.2
[2]). Simultaneously, we solve the equation tracking the
dye fronts, which in branch i at xi ¼ ΛiðtÞ is ∂Λi=∂t ¼
ujsðΛi; tÞ ¼ −fðWÞΓxðΛi; tÞ. When a front reaches a junc-
tion, new fronts are created in the downstream branches.
To reduce computational costs and provide additional

insight, we consider the limit of small concentration
gradients, which arises in applications where concentration
differences between exogenous and endogenous surfactants
are small. We decompose the concentration into a time-
and space-averaged component and a fluctuating compo-
nent: Γ ¼ Γ̄þ Γ̂ðx; tÞ, with jΓ̂j ≪ Γ̄. Model (2) simplifies
to the linear diffusion equation Γ̂t ¼ fðWÞΓ̄Γ̂xx. In the
discrete mimetic representation, the Laplacian operator
fðWÞΓ̄V−1ATL−1A has orthogonal eigenvectors ϕn under
an inner product hϕl;ϕmi ¼ ϕT

l Vϕm (Sec. S4 [2]). The
vector of vertex concentrations can be decomposed in a
sum of eigenmodes, namely ΓðtÞ ¼ P

N
n¼1 Anϕne−λnt, with

amplitudes An ¼ hϕn;Γðt ¼ 0Þi; λn are the corresponding
eigenvalues. In the linear regime, the concentration in the
maze can be approximated without the need for time
integration, by instead using only a finite number N of
eigenmodes.
We test our models by comparing their predictions to the

dye front locations in the experiments, as shown in
Fig. 3(a), which plots time versus location along the global
solution path; the inset shows data for a lateral branch. The
nonlinear model (shown by the black continuous line)
captures the spreading dynamics. Its least-square error
relative to the experiment is minimized by setting the
order-one coefficients δ ¼ 0.15 and τend ¼ 0.24 [2]. In the
experiments, fronts in lateral branches are observed to
eventually recede after initially advancing; this is most
visible near the inlet (Supplemental Movie 1 [2]); an
example is shown in the inset of Fig. 3(a). This receding
effect occurs as the concentration at the beginning of the
lateral branch eventually decreases over time, as the
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exogenous surfactant spreads across the rest of the maze,
yielding a reversal of the Marangoni stress. The nonlinear
model captures the flow reversal qualitatively, generally
overpredicting relaxation time [inset of Fig. 3(a)]. The
nonlinear model predictions are not sensitive to the exact
value of δ: any value in the range 0.02 ≤ δ ≤ 0.21 captures
the dynamics in the experiment.
Since the shapes of the eigenmodes depend only on the

network geometry, transport dynamics in branching net-
works can be studied from the dominant eigenmodes and
eigenvalues without having to solve the full nonlinear
transport model. The maze-solving dynamics described
above are already reproduced by a linear model truncated to
just three modes, as shown by the dashed lines in Fig. 3(a).
The front location on the global solution path is captured
quantitatively. The spatial structure of each mode is in
Fig. 3(b). The zeroth mode represents the surfactant
concentration at steady state, t → ∞. The first mode,
λ1 ¼ 0.75, has a decreasing profile along the solution path,
corresponding to the main concentration gradient driving
the front, key to the maze-solving behavior. The second
mode, λ2 ¼ 2.52, presents a wavy profile, which, in
combination with the first mode, controls the receding
dynamics observed in lateral branches. The exact temporal

evolution requires computation of the mode amplitudes,
which depend on initial conditions. If three modes were
used, δ ≈ 0.03 minimized the least-square error. Using a
larger number of modes, e.g., of order 100, recovers δ ≈
0.15 found by the nonlinear model. The main challenge for
the linear model is to capture the nonlinear distribution of
concentration at t ¼ 0, better approximated using a larger
number of modes.
To assess the importance of 2D dynamics neglected in

the model, we perform a 2D simulation of the surfactant
transport through branches 7–14 (see Fig. 4). We use
COMSOL

® to solve the 2D analog of the 1D model (2),
namely Γt ¼ ∇ · ðΓ∇ΓÞ=4, in the maze geometry. A good
match to experiment is achieved by imposing Γ ¼ 1 at the
entrance of branch 7 and Γ ¼ 0.7 at the exit of branch 14,
with initial condition Γ ¼ 0.7 everywhere; as before, care is
taken to regularize the initial Γ field [2]. We use the
particle-tracing module to track the exogenous-endogenous
surfactant front. Dominant dynamical features are repro-
duced by the 2D model (Fig. 4). In the experiments, the
exogenous surfactant tends to spread along the inside of
sharp corners (blue arrows), while it spreads through the
middle of the path as it enters new branches from a junction
(green arrows). The 2D simulation captures qualitatively
these behaviors, which are due to the compression of

FIG. 3. (a) Front location ΛMðtÞ in time along the solution path,
normalized by overall length LM, from experiments (red curves,
experimental error shaded pink), nonlinear model (black curves),
and three-mode linear model (dashed curves). Inset shows lateral
branch 4. (b) First three eigenmodes of the linear model along the
solution path, with eigenvalues λ shown. Thick vertical black
lines show the start and end points. Dashed lines show junctions.

(a)

(b)

Concentration Г

0.7 10.85
0.7

1

0.85

1 cm

Г

t = 4 s

FIG. 4. (a) Experiment, showing branches 7–14. (b) 2D non-
linear simulation. Tracers (red dots) are advected from their
starting position (blue dots) along Lagrangian trajectories (black
lines). Experimental features are reproduced qualitatively: the
front spreads inside sharp corners (blue arrows) and centrally at
straight junctions (green arrows), owing to the bending of the
concentration contours.
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surfactant concentration level curves at the inside of corners
[Fig. 4(b)]. The nonlinear model appears consistent with
surfactant dynamics on 2D confined surfaces. However, the
2D simulation does not capture some of the gaps that
appear between the maze walls and dye (orange arrows).
These features could be due to aspects omitted from the
model such as geometrical imperfections, surface defor-
mation at menisci, or chemical heterogeneities.
Our model reveals the importance of exogenous-

endogenous surfactant interaction in the maze-solving
behavior. Although the model makes assumptions about
the endogenous surfactant, our results show that the model
is robust; the maze-solving dynamics continue to be
reproduced as the ratio of endogenous to exogenous
concentration is varied across one order of magnitude.
To confirm that this conclusion remains valid for systems
comprising other liquids, surfactants, and tracers, we also
designed and performed additional experiments, as
reported in [2]. These new experiments show that the same
maze-solving dynamics are observed, as long as laminar
flow is maintained. To this end, the original experiments of
[1] leveraged the fact that soap in milk induces mild surface
tension changes, as compared to typical surfactants in water
[51]. As an example, we show that the maze experiment
can be performed with another mild surfactant, namely
2-propanol in glycerol, and using tracer particles (rather
than dye) for visualization [2]. Through the invisible
endogenous surfactant, the exogenous surfactant is “aware”
of the whole network topology. The large area of the outlet
compared to that of the lateral branches ensures that large
concentration gradients remain along the solution path,
thereby driving the exogenous surfactant to the outlet. In
lateral branches, compression of endogenous surfactant
limits access by exogenous surfactant. The elliptic nature of
the spatial differential operator in (2) means that the
surfactant spreads through the maze with an omniscient
view of the geometry, since together the exogenous and
endogenous surfactants fill the whole maze at all times.
Although our model is not designed to simulate surfac-

tant transport in lungs, it may provide insight and novel
methodologies for studying surfactant therapies for lungs.
Its essential ingredients, endogenous surfactant [17–22]
and network asymmetry [44–46], are characteristic of
lungs. Exogenous surfactant delivering drugs to the distal
airways and alveoli may spread nonuniformly through the
lung, reducing drug efficacy. The model could inspire lung-
scale models to test the impact of lung network asymmetry
on surfactant drug delivery. Our mimetic finite-difference
implementation on a network is amenable to scale-up, as
we found from preliminary tests on a network with Oð104Þ
branches based on real lung scans. If the linear regime
applies, the transport model decomposes into a series of
modes computed from the network topology, thus helping
understand surfactant transport without computationally
expensive simulations. Our model framework provides a

novel approach compared to single-branch models [17–
20,42,43], which overlook complex lung topology, and
molecular dynamics simulations [52–55], which are
numerically expensive to run over a whole lung.
Our model reveals how the combination of asymmetry in

the maze network and exogenous-endogenous surfactant
interactions are key to understanding confined transport
problems in complex branching networks, such as lungs.
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