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We demonstrate the existence of coexisting frequency combs in a harmonically mode-locked laser that
we link to the splay phases of the Kuramoto model with short range interactions. These splay states are
multistable and the laser may wander between them under the influence of stochastic forces. Consequently,
the many pulses circulating in the cavity are not necessarily coherent with each other. As these partially
disordered states for the phase of the field still feature regular intensity pulses, we term them as incoherent
crystals of optical pulses. We provide evidence that the notion of coherence should be interpreted by
comparing the duration of the measurement time with the Kramers’ escape time of each splay state. Our
theoretical results are confirmed experimentally by performing high resolution spectral measurements via a
heterodyne technique of a passively mode-locked vertical external-cavity surface-emitting laser.
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The realization of mode locking (ML) has been a
milestone of laser physics as it allowed us to generate
the ultrashort pulses that are of paramount importance in
many fields [1]. The term ML stems from the synchronous
oscillation, i.e., the phase locking of many electromagnetic
modes in a cavity. The emergence of such macroscopic
coherent states, either spontaneously or under periodic
forcing, can be seen as the critical point of an equilibrium
phase transition [2–4] establishing a link between modal
self-organization and frequency combs in active cavities
[5,6]. The applications of ML encompass radio-over-fiber
[7], two-photon absorption microscopy [8] or dual comb
spectroscopy [9]. The fundamental importance of mode-
locked lasers is demonstrated by their link with dissipative
solitons [10], their generalization to spatiotemporal systems
[11–14] or their capability as Ising photonic machines
to solve non-deterministic polynomial-time (NP) hard
problems and perform Boltzmann sampling [15–17].
A pulsating laser can operate in the harmonic mode-

locked (HML) regime, a state in which the laser cavity
supports a train of N ∈N equidistant pulses (denoted as
HMLN) [18], see Fig. 1(a). This effectively reduces the
pulse train period to τ=N with τ the cavity round trip, while
circumventing the difficulties inherent in using shorter
cavities. These regular pulse arrangements can be identified
spectrally since the repetition rate multiplication corre-
sponds to an equivalent N-fold increase in the distance
between spectral lines that becomes a multiple of the
fundamental free spectral range (FSR), i.e., N=τ. Such
states have been widely observed in mode-locked fiber
lasers [19–21] but also in optical systems with broken
phase symmetry such as optically injected Kerr micro-
cavities [22,23]. In the latter, regular pulse trains, also

termed “soliton crystals,” are phase locked to an external
reference beam which leads to a unique, well-defined,
frequency comb. The phase invariance of the field in a
mode-locked laser radically modifies the picture as it
allows each pulse to possess a different phase φi with
i∈ ½1; N�, see Fig. 1(b).
In this Letter, we ask the seemingly naive question: are

the N pulses circulating in a HML cavity necessarily
coherent with each other? What are their phase relations
(if any), and could an incoherent mode-locked crystal of
pulses simply exist? To answer this question and, at
variance with [2–4], we consider the phases of the pulses,
instead of, those of the cavity modes, in a dissipative, out-
from-equilibrium, framework.

FIG. 1. (a) Schematic of a unidirectional ring cavity mode
locked by a saturable absorber and operated in the HML5 regime.
Each pulse possesses a phase φi, as indicated by the small clocks.
The phases and their differences are shown in (b) and (c) while
the black arrow in (c) denotes the value of the order parameter b
representing the average coherence.
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We shall consider a passively mode-locked unidirec-
tional ring laser as depicted in Fig. 1 in which a saturable
absorber promotes pulsed emission. We study the HML
dynamics using the well-established Haus master equation
[24–26] that links the evolution of the electric field (E), the
gain (g), and absorber population (q),

∂θE ¼
�

1

2γ2f
∂
2
z þ

1 − iαg
2

g −
1 − iαq

2
q − k

�
Eþ σξ; ð1Þ

∂zg ¼ Γðg0 − gÞ − gjEj2; ∂zq ¼ q0 − q − sqjEj2: ð2Þ

Here, z and θ denote the fast and slow timescales which
describe the evolution within one round trip and from one
round trip to the next one, respectively. Further, the gain
bandwidth is γf, the cavity losses are k and αg;q correspond
either to the linewidth enhancement factors for semicon-
ductor material or the transition line detuning in atomic
gain media. Time is normalized to the absorber recovery
time of 80 ps and the gain recovery rate is denoted as Γ,
while the ratio of the saturation energy of the gain and the
absorber media is s. For simplicity, we model the sponta-
neous emission fluctuations and the mechanical vibrations
in the cavity potentially impacting coherence with a
(normalized) white Gaussian stochastic process (ξ). The
noise amplitude in Eq. (1) is σ. Equations (1) and (2) were
complemented with the dynamical boundary conditions
detailed in [26]. However, identical conclusions were
obtained using periodic boundaries or by using a more
refined model [27] and for widely different parameter
values, see Supplemental Material (SM) [28]. The coher-
ence of a regular HML state can be measured by the order
parameter b ¼ ð1=NÞPj exp ½iðφj − φj−1Þ�, which is
equivalent to the first order field correlation gð1Þðτ=NÞ
for a train of equidistant pulses that are identical up to a
phase, see SM [28]. Perfect order corresponds to jhbij ¼ 1,
see Fig. 1(c), whereas full disorder yields jhbij ¼ 0. The

bracket denotes a temporal average over many cavity round
trips. In order to derive in which configurations the pulses
can exist in an HML regime, it is sufficient to consider the
ring boundary conditions in Fig. 1(a). We assume that the
phase difference Δφ between neighboring pulses is con-
stant, a condition fulfilled only for NΔφ ¼ 2πp with
p∈ ½0; N − 1�. We characterize the steady states by the
integer index p or equivalently a phase difference
Δφp ¼ ð2π=NÞp. This is the definition of a splay state
[29]. We note that a phase shift Δφp between pulses
separated by a distance Δz ¼ τ=N corresponds to an
offset of the carrier frequency νp ¼ Δφp=ð2πΔzÞ ¼ p=τ.
Consequently, these N splay states correspond to frequency
combs that are shifted of p times the fundamental FSR of
the cavity.
When a pulse crosses over the amplifier, it depletes its

available gain, that only partially recovers before the arrival
of the next pulse. This leads to a repulsion between pulses
[30,31]. For short cavities where Γτ < 1, the positions of
the pulses are tightly bound, as in a crystal, to zj ¼ jτ=N.
Pulses also possess phase sensitive interactions with their
neighbors via the overlap of their decaying tails, see
Fig. 1(a). Assuming exponential tails, this coherent effect
scales as exp ð−τs=τpÞ ≪ 1 with τs the separation between
pulses and τp the pulse width. Consequently, the phase of
each pulse evolves in relation with that of its nearest
neighbors over a timescale much larger than the round trip.
Notice that previous works demonstrated coherence in a
HML laser with a ratio τs=τp ≃ 23 [20] indicating that this
nearest neighbor interaction is extremely weak. While
ratios up to τs=τp ≃ 50 were reported in [32], the impact
of these interactions must be contrasted with the amount of
spontaneous emission and technical noise destroying
coherence.
The phase dynamics being the slowest variables, their

evolution can be obtained by projecting the dynamics of the
Eqs. (1) and (2) onto the central manifold, leading to

∂θφj ¼ Aþ sin ðφj−1 − φj þ ψþÞ þ A− sin ðφjþ1 − φj þ ψ−Þ þ ξj; φ0 ¼ φN; j∈ ½1; N�: ð3Þ

We denote ðA�;ψ�Þ the amplitudes and phases of the
coupling forces that originate from the overlap between the
pulse and its nearest neighbors. Equation (3) captures
the essence of the dynamics since ðA�;ψ�Þ depends
effectively on all of the laser parameters. For ψ� ≠ 0 the
interactions are nonvariational. In addition, since the pulses
tails are a priori not symmetrical, Aþ ≠ A− rendering
interactions nonreciprocal [33,34]. Note that changing
the parameters of the HML system will influence the phase
dynamics only as much as it modifies ðA�;ψ�Þ. Finally, ξj
is a Gaussian white noise whose amplitude corresponds to
the projection of the original stochastic process in Eq. (1)

over the phase dynamics. Equations (3) correspond to the
Kuramoto model with nearest neighbor interactions, also
known as the dissipative XY model, see [35] and references
therein. A linear stability analysis of Eq. (3) reveals that a
splay state is stable if α0 < Δφp < α1 with αk given by the
following expression

αk ¼ kπ þ arctan

�
A− cosψ− þ Aþ cosψþ
A− sinψ− − Aþ sinψþ

�
: ð4Þ

We observe that the range of stability is always π and that
the half-circle of stability is simply rotated as a function of
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ðA�;ψ�Þ. The most important consequence of Eq. (4) is
that the splay states that are solutions of Eq. (3) can be
multistable. In fact, for N ≥ 5, there must be at least two
states that fall within the range of stability and 50% of states
are stable in the thermodynamic limit N → ∞. In order to
test our predictions we simulated numerically Eqs. (1) and
(2), which we initialized with the five different splay states,
see Figs. 2(a) and 2(b). All these solutions correspond to
the same intensity profile as demonstrated in Fig. 2(c). The
rotation of the field Δφp from one pulse to the next creates
a p=τ frequency-shifted comb, see Fig. 2(d). We observe
that two initial conditions remain stable upon their time
evolution as they lie within the stable region defined by
Eq. (4) and marked by the gray areas in Figs. 2(a) and 2(e).
The other three trajectories correspond to unstable states
and converge to one of the two stable configurations,
cf. Fig. 2(a). The parameters ðA�;ψ�Þ in Eq. (3) were
extracted from Eqs. (1) and (2) by using a perturbation
analysis around each splay state.
The prediction of multistability forN ≥ 5 has a profound

consequence on the measurement of the coherence as it
must be interpreted by comparing the Kramers’ escape time
of each splay state [36] with the measurement time. The
latter typically occurs experimentally over several tens of
milliseconds, which corresponds to millions of round trips.
We show in Fig. 3(a) the result of a long simulation of
Eqs. (1) and (2) over 108 round trips, i.e., ∼0.4 s for
τ ¼ 4.4 ns. Because of noise, the system is able to visit
many times all the stable states. This is best observed in
Fig. 3(b) which provides a close-up around a small part of
the original time trace. Note that visiting the unstable states
is also possible for higher noise amplitudes and that the
noise amplitude used here only gives rise to a 5%
fluctuation of the pulse peak power (cf. Figs. 2 and 3 of

SM [28]). We detail in Fig. 3(c) a histogram of the value of
arg b. Because of the low noise value, the distribution is
narrowly peaked around each stable splay state and the
theoretical value of the order parameter should be
hbpi ¼ exp ðiΔφpÞ. Indeed, if the value of the coherence
jhbij is calculated over a time smaller than the average
residence time, we obtain jhbij ∼ 0.95. If instead the
coherence is measured over the entire time trace,
jhbij ¼ 0.63; this is the result of the partial cancellation
between hb0i and hb1i. Hence, in this system, the ergodic
hypothesis that consists in replacing statistical (ensemble)
average by a single realization of a stochastic process is
valid only for extremely long measurement times. We
envision this effect to become even more prominent for

(a) (b) (c) (d) (e)

FIG. 2. (a) Evolution over the slow time θ of various splay states associated to the HML5 solutions obtained from solving Eqs. (1) and (2)
numerically. The initial phase differences are given by Δφp ¼ ð2π=NÞp, and are shown in panels (b) and (c) where one can see that the
intensity profiles are identical while the real parts of the electric fields differ. (d) Frequency spectrum of the initial conditions. For each
phase difference the corresponding comb is shifted by ðp=τÞ. (e) Phase plane visualization of the initial conditions used in (a)–(d). The
shaded gray areas in panels (a) and (e) correspond to the region of stability which is of size π. The trajectories in (a) converge to steady
states within the region of stability. Parameters are ðγf; k; αg; αq; τ; g0;Γ; q0; s; σÞ ¼ ð40; 0.1056; 1.5; 0.5; 12.5; 4gth; 0.08; 0.27; 10; 10−5Þ
and correspond to a 5 GHz mode-locked laser emitting 14 ps pulses (FWHM). The lasing threshold is defined as gth ¼ q0 þ 2k.

(a)

(b)

(c)

FIG. 3. (a) Time evolution over slow time θ of phase differences
for five pulses (light red) for the same parameters as in Fig. 2
obtained from a direct numerical simulation of Eqs. (1) and (2)
with added noise of amplitude σ ¼ 4 × 10−4. The black line
denotes the phase of the order parameter b. As the system is
bistable for N ¼ 5, the order parameter jumps between the two
stable steady states Δφ0;1 ¼ 0; ð2π=5Þ. (b) Enlarged view around
a region with multiple jumps. (c) Statistical distribution of the
phases visited by arg b. The two peaks correspond to the two
aforementioned steady states.
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higher number of pulses leading to a larger number of
attractors in which the system may remain frozen.
Having demonstrated the good agreement between

Eqs. (1) and (2) and Eq. (3), we performed an extended
analysis as a function ofN and the noise level using Eq. (3).
Our results are summarized in Fig. 4. If the amplitude of the
noise is too low, the system will not be able to jump from
one steady state to the other leading to a coherence close to
unity. If it is too high, i.e., σ ≫ A�, coherence is entirely
lost as jhbij → 0. Yet in this case the system continues to
generate a very regular intensity pulse train and it can
therefore be interpreted as an incoherent crystal. Finally,
the coherence decays faster for larger values of N as it is
averaged over a larger number of states. The numerical
curves in Fig. 4 (in blue) were fitted with the analytical
formula for the coherence (in black) of the Hamiltonian XY
model [37] that shares the same steady states as Eq. (3)
(cf. SM [28] for details).
To confirm our theoretical predictions, we implemented

an experimental setup consisting of a vertical external-
cavity surface-emitting laser (VECSEL) mode-locked
using a semiconductor saturable absorber mirror as in

[38]. The laser cavity (see SM [28]) has a round trip time
τ ¼ 8.5 ns. For this value of τ, the optical pulses can be
addressed on and off independently [39,40] although they
become equidistant rapidly due to the repulsive incoherent
forces discussed above. This leads to the multistability of
the HML states with N ∈ ½0; 8�. The laser output is sent to a
heterodyne measurement setup that analyzes the spectral
features of the pulse train. By beating the laser output with a
stable CW laser source, we convert a portion of the optical
spectrum into the radio-frequency (rf) domain (see SM
[28]). We analyze the coherence of a pulse train consisting
of four equidistant pulses. Figure 5(a) shows a spatiotem-
poral map of the laser intensity for the HML4 solution,
where the horizontal axis represents the round-trip time and
the vertical axis is the number of round trips, which
highlights that the pulses are perfectly equispaced, have
the same amplitude, and are stable over more than 104

round trips. Figures 5(b) and 5(c) describe the principle of
the heterodyne measurement. Panel (b) schematically
illustrates the optical spectrum of a mode-locked laser that
is emitting on a coherent splay state with N ¼ 4. Because
of the coherent interaction between the pulses, the spectrum
is composed of equidistant lines every 4 FSR. The CW
laser frequency is represented in red and the beating
frequencies are shown in green. The corresponding rf
signal is shown in panel (c).
The jump from one coherent splay state Δφp to another

Δφq should manifest in the optical spectrum by a (p − q)-
harmonic FSR shift while the interference pattern should
keep the same visibility (see SM [28]). The heterodyne
optical spectra (cf. the right column of Fig. 5) reveal the
various splay states explored by the system. Figure 5(d)
shows a situation identical to the example depicted in panel
(c), which indicates that the pulsed solution is a coherent
splay state. In panel (e), the rf spectrum shows the same
features as panel (d) but the lines in the optical spectrum are

(a) (b)

FIG. 4. The order parameter jhbij as a function of noise for
(a) N ¼ 2 and (b) N ¼ 5 pulses in the cavity [blue: Haus Eqs. (1)
and (2), black: phase model in Eq. (3)]. The cavity round trip is
increased according to the HML number as τ ¼ N × 2.5. Same
parameters as in Figs. 2 and 3. Inset in (b): analytical result for the
Hamiltonian phase model.

FIG. 5. (a) Space-time diagram of the laser output showing four equidistant pulses. (b) Schematic representation of an optical spectrum
showing the CW laser line used for the heterodyne beating and the VECSEL comb for a splay state of four pulses. The frequency
difference between the CW laser and the nearest comb line is δ. (c) Resulting heterodyne rf spectrum obtained from the signal in (b). (d),
(e) Represent two heterodyne rf spectra showing a jump between two splay states spectrally separated by one FSR since δ2 ¼ δ1 − 1=τ.
(f) rf spectrum of an incoherent state consisting of the average of all the splay states.
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shifted with respect to the previous case. In accordancewith
the theory, the shift jδ1 − δ2j experienced by the optical
lines corresponds to one FSR of the laser optical spectrum,
as demonstrated in SM [28]. Figure 5(f) reveals that the
pulse train can also be incoherent, as predicted theoreti-
cally. This incoherent state is characterized by phase jumps
which are responsible for the emergence of multiple beat-
ing lines in the optical spectrum. Here, the maximum
number of 8 lines (2 beat tones times 4 possible FSR
jumps) is obtained, indicating that within the acquisition
time of the rf spectrum analyzer (20 ms), the phase
differences between pulses have explored all the four stable
and unstable possible configurations (from 0 to 3π=4). This
demonstrates that a pulse train can be stable in intensity,
while the phase difference between consecutive pulses can
vary in time. Similar results were obtained for a larger
number of pulses, see SM [28], and different current values.
In conclusion, we demonstrated that the harmonic pulse

trains emitted by a mode-locked laser are equivalent to the
splay-phase states of the Kuramoto model with short range
interactions. The multistability between frequency combs
was experimentally observed. The evolution of the coher-
ence between high and small values confirms that this
notion must be interpreted by comparing the duration of the
measurement time with the Kramers’ escape time of each
splay state. These partially disordered states for the phase
feature regular intensity pulse trains which we term
incoherent optical crystals. Our minimal model was suffi-
cient to explain the experiment. However, additional
couplings arising from time-delayed feedback, as in
[40], or intracavity lenses reflection would induce further
nonlocal coupling between pulses and lead to an even
richer phenomenology, as observed in other fields [41–43].
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