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Based on its simple valence electron configuration, we may expect lithium to have straightforward
physical properties that are easily explained. However, solid lithium, when cooled below 77 K, develops a
complex structure that has been debated for decades. A close parallel is found in sodium below 36 K where
the crystal structure still remains unresolved. In this Letter, we explore a possible driving force behind this
complexity. We begin with the observation that Li and Na form close-packed structures at low
temperatures. We demonstrate a gauge symmetry that forces all close-packed structures to have the same
electronic energy and, in fact, the very same band structure. This symmetry requires two conditions:
(a) bands must arise from s orbitals, and (b) hoppings beyond second-nearest neighbors must be negligible.
We argue that both can be reasonably invoked in Li and Na. When these conditions are satisfied, we have
extensive degeneracy with the number of competing isoenergetic structures growing exponentially with
system size. Weak effects, such as p-orbital admixture, long-range hopping, and phonon zero-point energy,
can break this symmetry. These can play a decisive role in “selecting” one particular ordered structure. This
point of view may explain the occurrence of ordered structures in Li and Na under pressure. Our results
suggest that martensitic transitions may also occur in heavier alkali metals such as potassium.
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Introduction—Systems with extensive degeneracy are
fertile ground for interesting physical properties. This is
best seen in the field of frustrated magnetism where a large
number of classical magnetic orders compete [1,2]. A
decisive role is then played by otherwise-small effects
such as spin wave entropy, magnon zero-point energy,
impurities, etc. [3–5]. They may “select” one particular
ordered state or even give rise to liquidlike disordered states
[6]. In this Letter, we bring out an analog wherein a large
number of crystal structures compete with one another. The
competition is among close-packed structures, a family of
structures with a long history dating from Kepler’s con-
jecture in 1611 [7,8]. Their realizations include more than
half of all elemental solids [9,10]. We argue that they
compete and give rise to structural frustration in lithium and
sodium.
The low-temperature, ambient-pressure structure of lith-

ium has been debated for decades. At room temperature
and pressure, lithium crystallizes in the bcc structure. A
martensitic transition occurs when cooled to 77 K, first
reported by Barrett in 1947 [11]. Neutron diffraction
measurements of McCarthy et al. in 1980 revealed that
the new phase is neither fcc nor hcp [12]. In 1984,

Overhauser proposed the 9R structure, a close-packed
structure with a nine-layer unit cell [13]. Subsequent
neutron experiments found evidence of stacking faults as
well as the coexistence of the fcc, hcp, and 9R structures at
short ranges [14–18]. More recently, in 2017, Elatresh et al.
[19] argued that de Haas–van Alphen measurements are
inconsistent with the 9R structure. In the same year, a
comprehensive study by Ackland et al. [20] concluded that
the actual ground state of Li is fcc. A similar picture
emerges in sodium, where Barrett demonstrated a marten-
sitic transition below 36 K [21,22]. Despite multiple studies
stretching over decades [16,23–27], the structure at lower
temperatures remains unresolved.
These studies reveal competition among close-packed

structures in Li and Na. This is surprising given that phases
such as fcc, hcp, and 9R have entirely different symmetries.
There is no a priori reason for them to be close in energy.
We propose an explanation in the form of a hidden gauge
symmetry, building upon little known results of Thorpe
[28] and Betteridge [29] that point to degeneracies in tight
binding bands of close-packed solids.
Close-packed structures and their representations—

Close-packed structures are the densest possible arrange-
ments of spheres in three dimensions [30,31], with a
packing fraction of ∼74%. They are constructed by stack-
ing layers of triangular-lattice arrangements. Each layer
must be laterally displaced in one of two directions relative
to the layer below. This leads to three possible lateral
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positions for each layer, denoted by A, B, C. A close-
packed structure can be denoted as a Barlow stacking
sequence—a sequence of letters where no two adjacent
letters can be the same. For example, fcc is represented as
ðABCÞ, a three-letter pattern that repeats indefinitely. The
number of close-packed structures grows exponentially
with the number of layers. As each layer can take one of
two letters (to be distinct from the previous layer),M layers
can be stacked in 2M−1 ways [32].
The Hägg code [33] is a dual representation that maps

each close-packed structure onto a 1D Ising configuration.
The Ising variable represents a certain “chirality”—the
change of lateral position upon moving along the stacking
direction. We define the chirality for A → B → C → A as
þ1, and for A → C → B → A as −1. The fcc structure
maps to an Ising ferromagnet, with all chirality variables
being þ1 (or all being −1). Below, we will consider a
structure with a repeating M-layer pattern. In the Hägg
code, this yields a sequence of M Ising variables with
periodic boundaries: σj, where j ¼ 1;…;M with
σMþ1 ≡ σ1. The “net chirality” defined as

P
M
j¼1 σj will

play a crucial role. We will then discuss the general case
with no periodicity in stacking.
Geometry of close packing—We consider a stacking

sequence which repeats periodically along the ẑ axis after
M layers. The underlying Bravais lattice is hexagonal, with
primitive lattice vectors

â ¼ x̂; b̂ ¼ R

�
2π

3

�
â; ĉ ¼ M

ffiffiffi
2

3

r
ẑ; ð1Þ

where RðθÞ denotes counterclockwise rotation about ĉ by
angle θ. The spacing between adjacent layers in any closed-

packed solid is
ffiffi
2
3

q
ð2rÞ, where r is the atomic radius. The

units of length in Eq. (1) are chosen such that 2r ¼ 1. The
unit cell containsM basis atoms, one from each layer, with
an example shown in Fig. 1.
In any close-packed structure, all atoms have a similar

local environment. There are 12 nearest neighbors (1 nn),
that can be divided into three sets: (i) Within the same layer,
there are six 1nn located at the corners of a hexagon
centered at the reference atom as shown in Fig. 2. For later
use, we denote the vectors connecting the center of the
hexagon to its corners as N k. (ii) Three 1nn are located in
the layer above, shown in Fig. 2. Their relative positions
belong to one of two possible sets, depending on the
chirality between the two layers. We denote these sets as
N þ⊥ and N −⊥. Each set contains three vectors, with all
vectors having the same projection along the stacking
direction (same ẑ component). (iii) Finally, there are three
1 nn in the layer below.
There are six second-nearest neighbours (2 nn): three in

the layer above (see Fig. 2) and three in the layer below.
Their positions relative to the reference atom depend on the

chirality between the respective layers. We define two sets
of 2 nn vectors to the neighbors in the layer above: N þ

2;⊥
and N −

2;⊥.
For third (3 nn) and further neighbors, the environment

may differ from one close-packed structure to another. For
example, in the hcp structure, there are two 3 nn located at

precisely �2
ffiffi
2
3

q
ẑ. In the fcc structure, there are no atoms

located at these relative positions. Supplemental Material
compiles this information in the form of a neighbor
table [34].

FIG. 1. Hexagonal unit cell of ðABACÞ close packing. There
are four basis atoms, one from each layer. The basis atom
from layer B (C) is located at the centroid of the “up” triangle
(“down” triangle).

FIG. 2. Local atomic environment in the sequence …AB….
Layers are offset in the stacking direction for clarity. The
reference atom is labeled “0.” Its nearest and second-nearest
neighbors are labeled “1” and “2,” respectively.
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Tight binding description—In the fcc structure, Li and
Na have nearly spherical Fermi surfaces arising from a
single band with dominant s-orbital character [19,27,35]. In
a generic close-packed structure, we describe bands arising
from a single s orbital in each atom’s valence shell [36]. For
simplicity, we proceed assuming that orbitals on distinct
atoms are orthogonal to one another. If this assumption is
relaxed, the symmetry described below will still hold
provided only 1 nn bonds are retained. A detailed dis-
cussion is presented in Supplemental Material [34].
Each orbital can be written as ju; v; w; αi, where ðu; v; wÞ

are integers that pick a unit cell. The index α∈ ½1;M� picks
one atom from the M-atom basis. Assuming electrons can
hop to 1 nn and 2 nn, the Hamiltonian acts as follows:

Ĥju; v; w; αi ¼ −t
X

ðu1;v1;w1;α1Þ∈ 1nn

ju1; v1; w1; α1i

− t0
X

ðu2;v2;w2;α2Þ∈ 2nn

ju2; v2; w2; α2i; ð2Þ

where t and t0 are hopping amplitudes to 1nn and 2nn,
respectively. The accompanying summations are over
nearest and next-nearest neighbors of ðu; v; w; αÞ. We
propose the following Bloch wave ansatz for the stationary
states of Ĥ:

jki ∝
X
u;v;w

XM
α¼1

cαeik·Ruvwα ju; v; w; αi; ð3Þ

where k is the crystal momentum, cα are coefficients to be
determined, and Ruvwα is the position vector of the atom
ðu; v; w; αÞ. Asserting that Eq. (3) is an eigenstate of Ĥ, we
are led to diagonalizing the following matrix:

HðkÞ ¼

0
BBBBBBBBBB@

VD V1 0 � � � V�
M

V�
1 VD V2

. .
.

0

0 . .
. . .

. . .
. ..

.

..

.
V�
M−2 VD VM−1

VM 0 � � � V�
M−1 VD

1
CCCCCCCCCCA
; ð4Þ

where each entry is a function of k (argument suppressed
for brevity). The diagonal entries are identical, given by
VD ¼ V0 − t

P
η∈N k e

ik·η, where V0 is the on-site contri-

bution, and the remaining terms arise from hopping to 1 nn
within the same layer. The off-diagonal entries depend on
chirality variables. Denoting the close-packed structure as
ðσ1;…; σMÞ in Hägg code notation, the right-of-diagonal
entry Vj depends on σj. It takes two possible values
given by

Vþ ¼ −t
X

η∈N þ
⊥

eik·η − t0
X

η∈N þ
2;⊥

eik·η;

V− ¼ −t
X

η∈N −⊥

eik·η − t0
X

η∈N −
2;⊥

eik·η: ð5Þ

These terms encode hoppings to the next layer, including
1 nn and 2 nn. Crucially, Vþ and V− have the same
amplitude but may differ in phase; see Supplemental
Material [34]. For later use, we write

VþðkÞ ¼ V−ðkÞe2iϕðkÞ; ð6Þ

where ϕðkÞ is a k-dependent phase. The eigenvalues of
Eq. (4) evaluated at each k within the Brillouin zone give
the electronic band structure.
Gauge symmetry with periodic boundaries—Consider

two distinct close-packed structures denoted as ðσ1;…; σMÞ
and ðχ1;…; χMÞ in Hägg code notation. As both have the
same number of layers, they share the same primitive lattice
vectors as given in Eq. (1) and consequently, the same
Brillouin zone. For a given momentum within this Brillouin
zone k, we define their Bloch Hamiltonians as HσðkÞ and
HχðkÞ, both of the form given in Eq. (4). Remarkably, these
Hamiltonians are related by a unitary gauge transformation
if the two configurations have the same net chirality, i.e., ifP

j σj ¼
P

j χj. To demonstrate this, we propose a trans-
formation matrix

Wσ;χ ¼ diagðeiθ1 ; eiθ2 ;…; eiθMÞ; ð7Þ

where fθjg are to be determined so as to satisfy

W†
σ;χHσðkÞWσ;χ ¼ HχðkÞ: ð8Þ

From the form of the generic Hamiltonian in Eq. (4), we see
that the diagonal terms (VD’s) are preserved under the
transformation by W. These terms are identical in HσðkÞ
andHχðkÞ. We then examine off-diagonal terms. We denote
the right-of-diagonal terms in these two Hamiltonians as
VjðσjÞ and VjðχjÞ, respectively. If σj ¼ χj, they are the
same. If not, one must be given by Vþ and the other by V−,
both defined in Eq. (5). In order to satisfy Eq. (8), we must
have VjðσjÞeiðθjþ1−θjÞ ¼ VjðχjÞ. This reduces to

ðθjþ1 − θjÞ ¼ ðχj − σjÞϕðkÞ; ð9Þ

where ϕðkÞ is defined in Eq. (6). These relations determine
θj’s. If Eq. (9) is summed over j’s, the left side vanishes due
to telescopic cancellation. In order to have consistent θj
values, the right side must also vanish when summed. This
can only happen when

P
j σj ¼

P
j χj. We have arrived at

a constraint for whenWσ;χ can be chosen to satisfy Eq. (8):
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The two close-packed structures must have the same net
chirality.
For two close-packed structures that are periodic with the

same number of layers and have the same net chirality, the
Bloch Hamiltonians at each momentum are unitarily
related. It follows that the two structures have precisely
the same band structure. When these bands are filled by
placing the system in contact with an electron reservoir, the
two structures will have the same electronic energy for any
chemical potential and temperature. This situation is
reminiscent of Ising magnets where the energy only
depends on the net magnetization [37]. The configuration
space separates into sectors characterized by net chirality,
some having large degeneracies. An example withM ¼ 18
layers is discussed in Supplemental Material [34].
Gauge symmetry with open boundaries—We now con-

sider open, rather than periodic, boundary conditions along
the stacking direction. This choice is more realistic and
applies to single-grain crystals grown in experiments. We
may use the Hamiltonian matrix of Eq. (4), but with the
corner entries VM and V�

M set to zero. In this setting, all
close-packed structures are degenerate regardless of chi-
rality. Given any pair of structures, we can always construct
a transformation matrix of the form in Eq. (7). There are
M − 1 relations of the form Eq. (9) that constrain M
variables (θj’s); a nontrivial solution always exists.
The symmetry can also be seen from an alternative

argument. At each k, the band energies are roots of the
characteristic equation detðHðkÞ − EÞ ¼ 0. Since HðkÞ is
tridiagonal, the determinant can be evaluated using transfer
matrices [38]:

detðH−EÞ ¼
�YM
j¼2

�
VD−E −jVjj2

1 0

��
VD −E 0

1 0

��
11

:

As we have already established, jVþj2 ¼ jV−j2. There is
nothing in the matrix product above which depends on the
particular stacking sequence. For allM-layer sequences, the
eigenenergies are the roots of the same characteristic
equation. If these levels are filled, all stacking sequences
will have the same energy, irrespective of the chemical
potential and temperature. We conclude that all close-
packed structures with the same number of layers and open
ends are degenerate.
We argue that even with periodic boundaries, energy

differences among close-packed structures are subexten-
sive; they do not grow linearly with the number of layers
[34]. For example, fcc and hcp differ in energy when
periodic boundaries are imposed. However, the energy
difference calculated on a per-atom basis vanishes in the
thermodynamic limit.
Symmetry breaking effects—We have demonstrated a

large ground state degeneracy that emerges from a gauge
symmetry. Our arguments are based on standard assump-
tions in any discussion of band structure, viz., translational

symmetry (within layers), the Born-Oppenheimer approxi-
mation, negligible interactions, etc. We now explore some
effects that could disrupt the gauge symmetry and lead to
ordering.
Higher orbitals: Our arguments are based on a tight

binding description of s orbitals. With higher orbitals such
as p, d, etc., the tridiagonal form of Eq. (4) will still hold
(assuming hopping is truncated at second-nearest neigh-
bors). However, the elements of Eq. (4) will be promoted to
matrices; e.g., if each atom contributes one s and three p
orbitals, we will have 4 × 4 blocks with entries that can be
written systematically using Slater-Koster parameters
[39,40]. With multiple entries in each block, a simple
gauge transformation of the form Eq. (7) can no longer
relate two different Bloch Hamiltonians.
Surprisingly, numerical results indicate that an approxi-

mate degeneracy survives when p orbitals are included. In
Supplemental Material [34], we discuss the band structure
of lithium with 2s and 2p orbitals included. By system-
atically tuning p-orbital admixture, we find that close-
packed structures develop a spread in energies. However,
this spread is comparable to the scale of the martensitic
transition. This indicates that a large number of structures
compete with one another below the transition.
Phonon zero-point energies: Our arguments are based

solely on electronic energy. Standard calculations of
phonon band structures using the General Utility Lattice
Program [41] do not show any degeneracy among close-
packed structures; see Supplemental Material [34]. We
consider the T → 0 limit, where phonons can only con-
tribute to energy via a zero-point contribution. We estimate
this contribution to be a few percent of the electronic energy
[34]. Nevertheless, it may break the degeneracy and select a
certain close-packed structure. This could explain the
recent observation of fcc order in lithium at low temper-
atures [20]. In frustrated magnets, it is well known that
zero-point energies of spin waves can lead to “state
selection” [42,43]. With structural frustration, phonon
zero-point energies play an analogous role.
At finite temperatures, phonons bands are occupied

according to the Bose-Einstein distribution. They contribute
to energy and entropy. Their free energy may break the
degeneracy or even favor an entirely different structure; e.g.,
see Ref. [44]. This could explain the appearance of non-
close-packed bcc order above a critical temperature [45].
Long-ranged hopping: The gauge symmetry only

applies if hopping beyond second neighbors is negligible.
If the solid is pressurized, atoms will move closer and
longer-range processes will emerge. This may explain the
fact that Li and Na order under pressure [46,47]. To
estimate the relevance of long-ranged hopping under
ambient pressure, we evaluate a ratio, ρ ¼ a=a0, where
a is the experimentally determined lattice constant, and a0
is the atomic radius. A large value ρ ≫ 1 indicates that
atoms are well separated, and long-ranged hoppings are
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negligible. We find ρLi ∼ 2.31 and ρNa ∼ 2.26. As they are
greater than unity, it is reasonable to neglect long-ranged
hoppings. In fact, heavier alkali metals also have similar
values with ρK ∼ 2.31, ρRb ∼ 2.24, and ρCs ∼ 2.14. This
suggests that they may also show frustration and a
martensitic transition, perhaps requiring lower temper-
atures and longer annealing than explored previously.
Discussion—Upon cooling, solids typically become

more ordered in their structure. In systems that undergo
a disordering transition [48,49], the ordered phase is at low
temperatures, while the disordered phase appears at high
temperatures. Lithium and sodium are two striking counter-
examples. They lose order when cooled, with the disor-
dered phase seemingly extending to zero temperature. We
provide an explanation in terms of a gauge symmetry that
connects an infinite family of idealized close-packed
structures.
Our arguments based on a tight binding approach can be

compared with the substantive ab initio literature on
ordering in lithium and sodium [50–54]. Unlike ab initio
studies which are restricted to small system sizes, our tight
binding approach treats all close-packed structures on the
same footing. Boundary conditions play an important role;
periodic boundaries along the stacking direction artificially
limit the degeneracy. An interesting future direction is to
examine whether the small energy differences seen in
ab initio studies are affected by choice of boundary
conditions.
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