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When a two-component mixture of immiscible fluids is stirred, the fluids are split into smaller domains
with more vigorous stirring. We numerically investigate the sizes of such domains in a fully developed
turbulent state of a two-component superfluid stirred with energy input rate ϵ. For the strongly immiscible
condition, the typical domain size is shown to be proportional to ϵ−2=5, as predicted by the Kolmogorov-
Hinze theory in classical fluids. For the weakly immiscible condition, quantum effects become pronounced
and the power changes from −2=5 to −1=4.
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When oil is poured into water and these fluids are stirred,
the oil becomes split into droplets in the water. The droplet
sizes become smaller with more vigorous stirring. Such
disintegration phenomena in multicomponent fluids are
ubiquitous in nature, and are important in engineering and
industry.
Kolmogorov [1] and Hinze [2] considered the disinte-

gration process of droplets, and estimated the size of
droplets in turbulent fluids. In fully developed turbulence,
the energy is input into the system as large-scale eddies,
which cascades toward a smaller scale, resulting in the
Kolmogorov power law of the energy spectrum [3]. In such
turbulent fluids, large-size droplets are unstable because
they are susceptible to deformation and disintegration due
to the fluctuating pressure of the surrounding fluid. Small
droplets are thus produced by the breakup of large droplets,
and this breakup process continues to a scale where the
turbulent energy to break up the droplets becomes balanced
with the droplet energy that sustains their shape. Droplets
smaller than this scale coalesce into large droplets.
Therefore, there exists a characteristic size D for droplets
in turbulent fluids, which is referred to as the Kolmogorov-
Hinze (KH) scale, given by [2]

D ∼ ðσ=ρÞ3=5ϵ−2=5; ð1Þ

where σ is the interfacial tension coefficient, ρ is the density
of the surrounding fluid, and ϵ is the energy input rate to
maintain the turbulence. The KH scale has been exper-
imentally verified in various systems [4–8]. Furthermore,
direct numerical simulations have been performed over the
last decade [9–15].
In this Letter, we extend the study of KH scales to a

quantum mechanical system: the superfluid turbulence of a
two-component Bose-Einstein condensate (BEC). We will
show that the KH scale also appears in superfluids and is
modified by quantum effects. Turbulent behavior in super-
fluids has been widely studied. For single-component

superfluids, a steady or decaying turbulent state exhibits
the Kolmogorov power law [16–31]. The turbulent behav-
ior of gaseous BECs has also been experimentally studied
[32–34], and a power law behavior has been observed
recently [35–40]. A wide variety of systems have been
studied theoretically, such as two-dimensional systems
[41–48], dipolar superfluids [49], and boundary layers
[50]. Here, we focus on the turbulence in a two-component
BEC. Turbulence in multicomponent BECs has been
investigated by many researchers [51–64]. In the context
of domain-size scaling in multicomponent BECs, coars-
ening dynamics following domain formation have been
studied extensively [65–79]. However, the KH scale, i.e.,
domain-size scaling in conjunction with Kolmogorov
turbulence, has not yet been investigated.
The power law of the KH scale in Eq. (1) can be derived

as follows. The typical domain size is determined by the
competition between the two energies,

Ebreakup ∼ Ecoalesce; ð2Þ

where Ebreakup and Ecoalesce are the energies relevant to
breakup and coalescence of domains, respectively. For a
length scale l, Ebreakup may be given by the kinetic energy
∼ρl3v2, where v is the typical velocity on the length scale
l. Within the inertial range of the Kolmogorov turbulence,
v obeys the two-thirds law [3], v2 ∼ ðϵlÞ2=3, and hence,
Ebreakup ∼ ρϵ2=3l11=3. On the other hand, if the interfacial
tension plays a crucial role in the coalescence process,
Ecoalesce is given by ∼σl2. Although the KH scale D is not
expected to be in the inertial range [11], we extrapolate
Ebreakup based on the two-thirds law to the scale where
Ecoalesce is dominant. Equation (2) then gives the typical
length scale l, which corresponds to the KH scale D in
Eq. (2). The KH scale also follows from a simple dimen-
sional analysis, assuming thatD is determined only by ρ, σ,
and ϵ.
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The interfacial tension is well defined also for a phase-
separated two-component BEC [80–82]. Therefore, we
expect that the KH scale in Eq. (1) also emerges in two-
component BECs, when the domain size D is much larger
than the interface thickness. In the phase-separated BEC,
the competition between the quantum pressure and the
intercomponent repulsion gives a characteristic length scale
W [see Eq. (5)]. WhenD ≫ W,W can be interpreted as the
interface thickness and the KH scale in Eq. (1) will hold.
However, for D ≪ W, the picture of the interfacial tension
breaks down in the derivation of Eq. (1). In this regime, the
quantum pressure plays a dominant role in the coalescence
of domains, and Ecoalesce is given by the quantum kinetic
energy (per domain), ∼nD3ℏ2=ðmD2Þ, where n and m are
the atomic number density and mass, respectively. In this
case, Eq. (2) gives the characteristic size as

D ∼ ðℏ=mÞ3=4ϵ−1=4: ð3Þ

Therefore, in the limit of weak segregation with large W,
the quantum mechanical effect becomes pronounced and
the KH scale is expected to change from the −2=5 to −1=4
power law with respect to ϵ. In the remainder of this Letter,
we will corroborate this prediction using numerical sim-
ulations of the coupled Gross-Pitaevskii (GP) equations.
In the mean-field approximation, a two-component BEC

at zero temperature is described by the coupled GP
equations,

iℏ
∂ψ1

∂t
¼
�
−
ℏ2

2m
∇2þVextþg11jψ1j2þg12jψ2j2

�
ψ1; ð4aÞ

iℏ
∂ψ2

∂t
¼
�
−
ℏ2

2m
∇2þVextþg22jψ2j2þg12jψ1j2

�
ψ2; ð4bÞ

where ψ jðr; tÞ is the macroscopic wave function for the jth
component, Vextðr; tÞ is the external stirring potential, and
gjj0 ¼ 4πℏ2ajj0=m with ajj0 being the s-wave scattering
length between the jth and j0th components.
The miscibility between the two components is deter-

mined by the coupling coefficients gjj0 . The two superfluids
are immiscible and phase separation occurs when g212 >
g11g22 is satisfied [83]. In the following, for simplicity, we
assume g11 ¼ g22 ≡ g > 0 and g12 > 0; therefore, the
immiscible condition reduces to g12 > g. We also assume
g12=g − 1 ≪ 1. The characteristic length scale in the phase
separation, over which the density of each component
changes from 0 to n (or n to 0) in an infinite system, has the
form [80–82]

W ≃ ξðg12=g − 1Þ−1=2; ð5Þ

where ξ≡ ℏ=ðmgnÞ1=2 is the healing length. When W is
much smaller than the domain sizeD,W corresponds to the
interface thickness of domains. In this case, the interfacial

tension coefficient is given by [80–82]

σ ≃
�
ℏ2n3

2m
ðg12 − gÞ

�
1=2

: ð6Þ

In the following, the length, time, and wave functions are
normalized byW,mW2=ℏ, and

ffiffiffi
n

p
, respectively, where n is

the average density of each component. In this unit, the
normalized interaction coefficients, g̃ and g̃12, in the GP
equation become (see Supplemental Material [84] for
details)

g̃ ¼ g
g12 − g

; ð7Þ

and g̃12 ¼ g12=ðg12 − gÞ ¼ g̃þ 1; therefore, the interaction
coefficients are reduced to the single parameter g̃. The GP
equation is numerically solved using the split-step Fourier
method [85], and the periodic boundary condition is
imposed. The numerical box with size L3 ¼ ð512ξ̃Þ3 is
discretized into a 5123 mesh, where the nondimensional
healing length is ξ̃≡ ξ=W ¼ 1=

ffiffiffĩ
g

p
. The two components

are equally populated,
R jψ1j2dr ¼

R jψ2j2dr ¼ L3, and the
initial state has a uniform density with random phases on
each mesh.
To input the large-scale turbulent energy, the system is

stirred using plate-shaped potentials given by

Vextðr; tÞ ¼ V0

X
fX;Yg

e−
�
X−L

2
sinðΩtþϕXY Þ

�
2

θðL=4 − jYjÞ; ð8Þ

where the potential height is taken to be V0 ¼ 2, θ is the
Heaviside step function, and the summation is taken over
fX; Yg ¼ fx; yg, fy; zg, and fz; xg with ϕXY ¼ 0, 2π=3,
and 4π=3, respectively. The three plate-shaped potentials
oscillating in the x, y, and z directions produce isotropic
turbulence. (See the movie in the Supplemental Material
[84] showing how the plate-shaped potentials stir the
system.) The maximum Mach number of the plate-shaped
potentials in the sinusoidal motion is defined as

M ≡ΩL
2vs

; ð9Þ

where vs ¼
ffiffiffiffiffi
2g̃

p
is the sound velocity.

To realize a steady turbulent state, the energy must be
dissipated on a small length scale. For this purpose, the
term −γð∇ · JÞψ j is added to the right-hand sides of Eq. (4)
(see Supplemental Material for detail [84]), where γ is a
positive constant and

J ¼ 1

2i

X2
j¼1

ðψ�
j∇ψ j − ψ j∇ψ�

jÞ: ð10Þ

This phenomenological dissipation term mimics the vis-
cous term in the Navier-Stokes equation and reduces the
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energy of the system while maintaining the unitarity. The
value of γ is selected in such a way that energy dissipation
occurs predominantly on a scale below those for the inertial
range and the domain size. The larger-scale dynamics are
not affected by the details of the dissipation, as long as it
occurs on a sufficiently small scale.
Figure 1(a) shows isodensity surfaces of jψ1j2 and jψ2j2

after the fully developed turbulent state is achieved. The
two components are separated and domains are formed in
each component because of the immiscible condition
g12 > g. The domain sizes in Fig. 1(a) are typically ∼10
(note that the length unit is W), and thus the KH scale is
expected to be in the region of Eq. (1) [rather than Eq. (3)],
which will be investigated later.
Figures 1(c) and 1(d) show cross-sectional views of the

densities jψ1j2 and jψ1j2 þ jψ2j2, respectively. Although
jψ1j2 (or jψ2j2) largely varies in space due to the phase
separation [Fig. 1(c)], the total density outside of the
stirring potentials is almost uniform [Fig. 1(d)]. Density
holes arising from quantized vortices are rarely observed
[86], since the velocity of the stirring potential is much
lower than the sound velocity of the density waves. This
situation is different from the quantum turbulence in a

single-component system, in which quantized vortices play
a central role in the energy cascade. This difference arises
because

H
v · dr does not need to be quantized in the two-

component system, where the mass-current velocity is
v ¼ J=ðjψ1j2 þ jψ2j2Þ. Figures 1(b) and 1(e) show the
distribution of the vorticity jωj ¼ j∇ × vj. There is no
singularity in Fig. 1(e); the vorticity is finite and localized
around the interfaces of the domains.
The typical size of the domains can be evaluated from the

density correlation function,

CðrÞ ¼ hdðr0Þdðr0 þ rÞi; ð11Þ

where d ¼ jψ1j2 − jψ2j2 is the density-imbalance distribu-
tion and h� � �i represents the average over the position r0 and
the direction of r. Figure 2(a) shows the time evolution of
CðrÞ. Since the initial wave function has a random
distribution, CðrÞ is initially narrow, which then becomes
broader and reaches a steady shape for t≳ 1000. We have
confirmed that the steady shape of CðrÞ is independent of
the initial state. We define the typical domain size D as the
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FIG. 1. Snapshots of a fully developed turbulent state at t ¼
2000 for g̃≡ g=ðg12 − gÞ ¼ 6.25 and M ¼ 0.18. A two-compo-
nent BEC is stirred by plate-shaped potentials [red or black in (a)
and (b)] to generate a turbulent state. The three plates oscillate in
the x, y, and z directions (perpendicular to the surface) from end
to end in the box. (a) Isodensity surfaces of jψ1j2 (purple or dark
gray) and jψ2j2 (green or light gray). See the Supplemental
Material for a movie of the dynamics [84]. (b) Isodensity surfaces
of jωj. (c), (d), and (e) Cross-sectional views (z ¼ 0) of jψ1j2,
jψ1j2 þ jψ2j2, and jωj, respectively.

FIG. 2. (a) Time development of the density correlation
function CðrÞ defined in Eq. (11) for g̃ ¼ 6.25 and M ¼ 0.29.
The lines for t ¼ 1000, 2000, and 3000 are almost overlapped
with each other. (b) Time development of the typical domain size
D (full width at half maximum of CðrÞ) for various values of g̃
and M. (c) Incompressible kinetic energy spectra Ekin

i ðkÞ for g̃ ¼
6.25 and various values of M [84], where the time average is
taken over two stirring periods. Ekin

i ðkÞ is compensated by ϵ̄2=3

and the length is rescaled by D̄, where ϵ̄ and D̄ are time-averaged
steady values of the energy input rate and the typical domain size,
respectively. The straight line represents Ekin

i ðkÞ ¼ ϵ̄2=3k−5=3. The
inset shows ϵ̄ as a function of M for g̃ ¼ 6.25 and 250.
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full width at half maximum of the correlation function
CðrÞ. Figure 2(b) shows the time development of D for
different values of g̃ and M. The size D first increases
because the initial random noise is rapidly dissipated, and a
steady size is reached after that. The steady size D
decreases with g̃ and M.
The energy input rate per atom is obtained by

ϵ ¼
R ðjψ1j2 þ jψ2j2ÞV̇extdrR ðjψ1j2 þ jψ2j2Þdr

; ð12Þ

where the time dependence of the potential Vext is given in
Eq. (8). The value of ϵ (and alsoD) fluctuates over time due
to the random nature of the turbulence. The sinusoidal
motion of the plate-shaped potentials also causes periodic
fluctuation. Therefore, we take the temporal average of
these quantities, ϵ̄ and D̄, over a sufficiently long time after
the steady turbulent state is achieved. The inset in Fig. 2(c)
shows ϵ̄ as a function of M.
To confirm that the system has reached the Kolmogorov

turbulence, we calculate the incompressible kinetic energy
spectrum Ekin

i ðkÞ of the total mass current (see
Supplemental Material for detail [84]), which is shown
in Fig. 2(c). Since the Kolmogorov theory predicts
Ekin
i ðkÞ ∝ ϵ̄2=3k−5=3, the plots in Fig. 2(c) are compensated

by ϵ̄2=3. The length is also rescaled by the domain size D̄ to
observe the effect of the domains on the energy spectrum.
Figure 2(c) shows that the lines of the energy spectra with
different ϵ̄ and D̄ collapse into a single universal line with a
slope of ≃ − 5=3 on a scale larger than the domain size
(kD̄≲ 1), which implies that the Kolmogorov energy
cascade occurs on this scale. At the scale of kD̄ ∼ 1, the
energy cascade is arrested by the domains [11], which
results in the deviation from the power law, as shown in
Fig. 2(c). This situation is similar to the case of a single-
component system, in which the inertial range is terminated
at the scale of the mean distance between quantized
vortices [16,87].
Now we are ready to investigate the KH scales in a

turbulent superfluid in the classical and quantum regimes,
as given in Eqs. (1) and (3), respectively. The results are
shown in Fig. 3, which are the main results obtained in this
study. Figure 3 plots the typical domain size D̄ versus the
energy input rate ϵ̄ for various values of the Mach number
of the stirring potential M and the normalized interaction
coefficient g̃. For D̄ ≫ W, the plots obey the ϵ̄−2=5 power
law, which agrees with the classical KH scale in Eq. (1).
This implies that the two components are well separated
and the interfacial tension plays a dominant role to coalesce
domains. The fact that the plots with different values of g̃
follow the common line in the present normalization
scheme indicates that D̄ obeys not only the ϵ̄−2=5 power
law but also the σ3=5 power law in Eq. (1). For D̄ ≪ W, on
the other hand, the plots in Fig. 3 obey the ϵ̄−1=4 power law,
which agrees with the KH scale in the quantum regime in

Eq. (3) and implies that the mechanism that suppresses the
disintegration of domains is mainly the quantum kinetic
energy arising from the uncertainty principle.
In the numerical simulations in Fig. 3, the plot range for

each g̃ is restricted, because the domain size D̄ is limited by
the size of the numerical box, and the energy input rate ϵ̄ is
limited by the maximum velocity allowed for the plate-
shaped potentials. In the present normalization, the box size
is L ¼ 512ξ̃ ¼ 512=

ffiffiffĩ
g

p
, and hence D̄ can be larger for

smaller g̃ (left-hand plots in Fig. 3). On the other hand, the
Mach number M of the plate-shaped potentials must be
smaller than about unity, or the total density would be
significantly disturbed and the present picture (domains
formed by phase separation) breaks down. In the present
unit, the sound velocity is vs ¼

ffiffiffiffiffi
2g̃

p
; therefore, we can

drive the stirring potential faster for larger g̃. This is the
reason why the energy input rate ϵ̄ can be made larger for
larger g̃, and the more rightward region can be plotted in
Fig. 3. Thus, although D̄ and ϵ̄ are restricted to narrow
ranges for each value of g̃ in the present numerical
simulations, the plots in Fig. 3 can be extended to a wide
range, which corroborates the existence of the two power
laws in the superfluid KH scale.
Finally, we discuss the possible experimental realization

of the present results. A box-shaped trap would be suitable
to avoid complexity arising from the inhomogeneous
jψ1j2 þ jψ2j2 distribution in a harmonic trap. The stirring
potential can be produced by a far-off-resonance laser
beam. Shaking of an optical box can also be used to
generate the turbulent state [36]. The typical size of the

FIG. 3. Typical domain size D̄ versus energy input rate ϵ̄ for the
steady turbulent state with g̃ ¼ 6.25, 12.5, 25, 100, and 250. For
each value of g̃,M is varied within an appropriate range (see text).
The slopes of the lines are −2=5 and −1=4 for comparison with
Eqs. (1) and (3). The length unit W is explicitly shown in the
ordinate for clarity.
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domains can be inferred from the imaging data, where slice
imaging of a three-dimensional distribution may be
required [88]. It is difficult to measure the energy input
rate directly; therefore, the support of numerical simulation
is necessary, which provides the relation between the
motion of the potential and the energy input rate, as in
the inset in Fig. 2(c). The interaction g12 can be varied using
the Feshbach resonance technique.
In conclusion, we have investigated the KH scale of

domain sizes in immiscible two-component superfluids in a
fully developed turbulent state. We predict that two regions
of the KH scale exist with different power laws, which
reflect the quantum properties of the system. Numerical
simulations of the coupled GP equations were performed,
and the typical domain size D̄ was confirmed to obey the
power laws with respect to the energy input rate ϵ̄. The
power changes from −2=5 to −1=4 with increasing ϵ̄, and
the crossover between these classical and quantum KH
scales is located at the region where D̄ is comparable to the
length scale W in Eq. (5). For a two-dimensional system,
the enstrophy cascade may be observed, which will be
studied elsewhere.
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