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Many active systems display nematic order, while interacting with their environment. In this Letter, we
show theoretically how environment-stored memory acts an effective external field that aligns active
nematics. The coupling to the environment leads to substantial modifications of the known phase diagram
and dynamics of active nematics, including nematic order at arbitrarily low densities and arrested domain
coarsening. We are motivated mainly by cells that remodel fibers in their extra-cellular matrix (ECM),
while being directed by the fibers during migration. Our predictions indicate that remodeling promotes
cellular and ECM alignment, and possibly limits the range of ordered ECM domains, in accordance with
recent experiments.

DOI: 10.1103/PhysRevLett.133.118402

Active nematics are systems composed of self-propelling
constituents capable of aligning along a shared axis with no
preferred overall direction. The active isotropic-nematic
transition has been studied extensively [1–4]. Similar to
passive liquid crystals, order is driven by strong aligning
fields, obtained by a combination of strong interactions and
high densities. Unlike passive systems, activity couples
order with propulsion and allows for coexistence between a
dilute isotropic phase and dense nematic phase.
Active nematics are ubiquitous in biological systems at

different scales. Ourmainmotivation is cells in extra-cellular
matrix (ECM), which are both capable of displaying nematic
order. Growing biological evidence suggests that
the interplay between cellular and ECM order is essential
for tissue patterning and multicellular migration [5–9]. In
particular, aligned collagen structures have been shown to
greatly promote metastasis [10,11].
Cell-ECM coupling is especially evident in fibroblasts

that deposit, degrade, and rearrange ECM fibers [12,13].
This has been modeled in different contexts, including
wound healing [14], fibroblast alignment [15], and ECM
patterning [8,16]. However, the macroscopic physical
mechanisms underlying cell-environment interplay and
their role in determining orientational order and dynamics
are not well understood or quantified.
Our approach to understand cell-environment interplay

is to consider them as a two-component active system. We
recently applied such a description to explain mechanical
feedback mechanisms between cells and ECM [17,18].

Here we focus on chemical remodeling. We find that
environment-stored memory acts as an external field that
allows for steady-state nematic order at arbitrarily low
densities and constrains angular dynamics. We relate our
results to recent in vitro experiments on fibroblasts [8,9].
While we are motivated by cells in ECM, our findings are
generic and imply that the understanding of standard active
matter may not apply in a dynamic environment, high-
lighting the need for further investigation and adaptation of
existing theories.
Theory—We consider active cells and passive environ-

ment (matrix) segments in two dimensions, each described
by their position and orientation, r and n for the cells and
r0 and n0 for the matrix. Cells self-propel with a velocity
v ¼ vn and diffuse with a diffusion coefficient D. They
also align with neighboring cells and matrix segments.
Matrix segments are considered to be apolar. They are
enslaved to the cells that may deposit and degrade them (for
more general choices, see SM in [19]). These dynamics are
described by the following equations:

∂tfc ¼ −∇ · ðfcvnÞ þD∇2fc − kfc þ kρce−Ec=Zc

∂tfm ¼ kþ
2
½fcðr0; n0Þ þ fcðr0;−n0Þ� − k−ρcfm; ð1Þ

where ∂t denotes the partial time derivative. The function fc
(fm) describes the distribution to find a cell (matrix
segment) at position r (r0) with orientation n (n0). They
are normalized such that

R
dnfc ¼ ρc is the cellular density

and
R
dn0fm ¼ ρm is the matrix density.

The cellular orientation dynamics are written in terms of
a tumbling rate k, and an orientation probability, given by*Contact author: radar@technion.ac.il
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the Boltzmann factor exp ð−EcÞ=Zc with the effective
alignment energy Ec and partition function Zc ¼R
dn exp ð−EcÞ [20]. This is a convenient choice that

allows for the recovery of passive systems in simple limits.
Matrix deposition and degradation are described by the

rates kþ and k−ρm per cell, respectively. Here, we assume
that cells locally deposit segments along their axis of
motion and degrade segments in all orientations. Similar
ingredients of cell and matrix dynamics were recently
proposed as part of a two-layer Viscek model [8]. We note
that Eq. (1) is written within mean field.
Averaging the different moments of the orientation

angles yields mesoscopic fields that are the focus of our
theory. The active cellular current density is given by
j ¼ v

R
dnfc, the cellular nematic tensor density is Qc ¼R

dnðnn − I=2Þfc, and the matrix nematic tensor density is
Qm ¼ R

dn0ðn0n0 − I=2Þfm. These fields are all extensive in
the number of cells or matrix segments.
We coarse-grain Eq. (1) into equations in terms of the

average fields, using an approximation that neglects higher
moments of fc in n beyond the nematic tensor. In particular,
we treat the orientation within mean field in terms of the
interaction EcðnÞ ¼ −2Tr½ðnn − I=2ÞQt� with the total
aligning field Qt ¼ βcQc þ βmQm. It includes cell-cell
and cell-matrix alignment, with the interaction strengths
βc and βm, respectively (more general choices, including
nonreciprocal interactions [21,22] are given in the SM [19]).
In the absence of cell activity and cell-matrix interaction,
our choice of Ec leads to an equivalent of Maier-Saupe
theory [23] for compressible two-dimensional systems.
The resulting field equations are [19]

∂tρc ¼ D∇2ρc −∇ · j;

∂tj ¼ D∇2j − v2∇ρc=2 − v2∇ · Qc − kj;

∂tQc ¼ D∇2Qc −
�∇jþ∇jT −∇ · jI

�
=4

− kQc þ kρcgðQtÞQt=Qt;

∂tρm ¼ ρcðkþ − k−ρmÞ;
∂tQm ¼ kþQc − k−ρcQm: ð2Þ

The first equation is the cellular continuity equation, given
by the active cellular current j and passive diffusive current.
The second equation is a polarization-rate equation for the
active current, which we interpret below, at steady state, as
a force balance equation.
The equation for Qc includes diffusion and shear align-

ment (first line), as well as nonlinear alignment terms that
dominate at large length scales (second line). They are
written in terms of the function gðxÞ ¼ I1ðxÞ=I0ðxÞ, where
InðxÞ is the modified Bessel function of the first kind [24],
which results from an angular average of the Boltzmann
factor exp ð−EcÞ. The cellular dynamics include the first
and second moments of the angular distribution (j and Qc,

respectively), similarly to “self-propelled rods” [25–27].
Finally, the matrix dynamics are governed by cellular
deposition and degradation.
These equations define our framework for active nem-

atics (cells) with environment-stored memory (matrix
nematic order), which we apply for the study of ECM
remodeling. Cell-matrix interplay enters the theory in two
ways: cellular alignment by the matrix as part of the
nematic tensor Qt and matrix remodeling by the cells
(see Fig. 1). Cellular activity enters our theory in the active
current j, matrix deposition and degradation, and possibly
in the alignment dynamics.
Next, we focus on the consequences of remodeling on

the emergence of cellular and ECM orientational order at
steady state as well as typical relaxation dynamics of the
cell and matrix. For brevity, we rescale times with the run
time 1=k and lengths with the typical cellular persistence
length v=k, while keeping the same notation.
Results—The standard isotropic-nematic transition in

active systems is similar to a gas-liquid transition [1,28],
where the alignment strength plays the role of inverse
temperature. At low densities and high temperatures, the
system forms a dilute isotropic gas, while at high densities
and low temperatures a nematic liquid. At intermediate
densities and temperatures, the two phases coexist and are
generally linearly unstable. Here, we show how the matrix
can break this behavior.
The key to understanding the coexistence lies in the

stress. In the hydrodynamic limit of large system size and
long time, the total cellular current is proportional to a
divergence of a tensor that we interpret as the stress [19],
σ ¼ −½ρcI þ 2Qc=ð1þ 2DÞ�. The steady-state behavior of
the cells is thus described by a constant stress tensor. We
consider a possible density profile along the x direction and
focus on the xx component of the stress that we denote as σ
for brevity,

σ ¼ σxx ¼ −
�
ρc þ

Qc

1þ 2D

�
: ð3Þ

FIG. 1. Heuristic description of cell-matrix feedback. Left
panel: cells (green) align with matrix segments (purple). Right
panel: cells degrade existing segments (dashed black) and deposit
new segments (bold black). The feedback between these proc-
esses drives the phenomena in our theory.
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The first term is the ideal-gas contribution to the pressure,
while the second term is an extensile active stress ∼Qc [29].
Here, we consider ordering either along the x axis (Qc > 0)
or the y axis (Qc < 0).
Coexistence is possible when the active stress decreases

with density, compensating for the increase in ideal-gas
pressure. This is the case for alignment in the y direction.
The stress σ can be considered as a Lagrange multiplier that
enforces the total number of cells. It is given by (minus) the
density in the isotropic phase.
Next, we derive the isotropic-nematic phase diagram in

the density-temperature plane, where βc; βm ∼ 1=T, and the
ratio βc=βm is kept fixed. Examples of such phase diagrams
with and without a matrix (ECM) are given in Figs. 2(a)
and 2(b). The region of coexistence is delimited by the
binodal line (solid blue line), within which lies a region of
linear instability, delimited by the spinodal line (dashed
red line).
Steady-state nematic order—matrix aligns cells at

arbitrarily low densities: We solve Eq. (2) at steady
state. The matrix density is ρm ¼ kþ=k−, independent of
ρc. The matrix nematic tensor has the same direction as the
cellular one, chosen here as the x axis. We define the
intensive nematic order of the cells and matrix, qc ¼ Qc=ρc
and qm ¼ Qm=ρm, and find that qm ¼ qc at steady state.
The matrix thus inherits the same intensive nematic order

as the cells. Consequently Qt ¼ ðβcρc þ βmρmÞqc at steady
state, and the cellular nematic tensor solves

qc ¼ g½ðβcρc þ βmρmÞqc�: ð4Þ

This is one of our main results. By expanding the right-
hand side of Eq. (4), we find that nematic order is possible
for βcρc þ βmρm > 2. The βmρm term quantifies the matrix
contribution and allows for nematic order even for vanish-
ing cellular densities ρc ≈ 0 [gray region in Fig. 2(b)]. The

mechanism is simple: even dilute cells deposit a finite-
density matrix after sufficiently long time. The matrix then
acts as an external field that aligns the cells. Alternatively,
rather than being aligned by current neighbors, cells are
aligned by the memory of past neighbors, recorded by the
matrix.
Next, we analyze the effect of ECM remodeling on the

spinodal and binodal lines, as is plotted in Fig. 2.
Spinodal—matrix stabilizes the nematic order: The

spinodal is given by ∂σ=∂ρc ¼ 0 for fixed values of βc
and βm [19]. This threshold of linear instability is due to a
negative compressibility. As the cellular density increases,
the active stress overcomes the osmotic pressure and pushes
cells up their concentration gradient. Note that active
nematics can also be unstable due to a combination of
active stress and shear alignment [30,31], but this is not the
case here, where the cells are effectively extensile and align
with the strain rate.
Negative compressibility occurs for ∂Qc=∂ρc <

−ð1þ 2DÞ [Eq. (3)]. In the isotropic state, Qc ≡ 0 and
this is not possible. Deep in the ordered state, Qc ¼ �ρc,
also ensuring stability. The instability is possible, therefore,
only for intermediate Qc values. For such values we
expand the nonlinear terms of Eq. (4) and find its possible
roots. One solution is qc ¼ 0 and the other is qc ¼
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðβmρm þ βcρc − 2Þ=ðβmρm þ βcρcÞ3

p
.

First, we examine the case of βmρm < 2. The cells
are isotropic at low densities and become ordered at
ρ� ¼ ð2 − βmρmÞ=βc. As Qc ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ − ρ�

p
in this case,

∂Qc=∂ρc ≪ −1 and the system is unstable. The cell density
ρ� thus marks the gas spinodal line. Otherwise, for
βmρm > 2, the slope ∂Qc=∂ρc at vanishing densities is
given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðβmρm − 2Þ=ðβmρmÞ3=2

p
< 1. The matrix thus

increases the compressibility and ensures stability.
This is why the spinodal lies outside the gray region in
Fig. 2(b).

FIG. 2. (a),(b) Phase diagrams in the density and temperature plane (a) without a matrix and (b) with a matrix. We consider ρ ¼ ρc and
T ¼ 1=βc. Solid blue lines are the binodal and dashed red ones are the spinodal. The values used are D ¼ 0.5, βm; ρm ¼ 0 (a), and
D ¼ 0.5, βm ¼ βc; ρm ¼ 5 (b). (c) Comparison between cell-dominated and matrix-dominated potentials. (d),(e) Snapshots of
coexistence curves from a numerical solution to the hydrodynamic equations [Eq. (2)] in the cell-dominated (d) and matrix-dominated
cases (e). The green ellipses are a heuristic description of cellular orientational order. The values used are D ¼ 0.5, σ ¼ −1, and
β ¼ 2.05 (βc in cell-dominated case and fβm in matrix-dominated case).
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Binodal—matrix allows for coexistence between different
orientations: The binodal describes, for a given temper-
ature, the densities of the macroscopic phases at coexist-
ence. We find it from the equation for Qc, while replacing
ρc by its steady-state value, −σ −Qc=ð1þ 2DÞ. Upon
proper rescaling of lengths [19], we find that

Q00
c ¼ Qc þ

�
σ þ Qc

1þ 2D

�
gðQtÞ≡ Fðσ; QcÞ: ð5Þ

This has the same structure as Newton’s equation, whereQc
plays the role of position and the x coordinate the role of
time, while F is the force (see also [32]). The first integral
(conservation of energy) yields E ¼ Q02

c =2þ U, where we
have denoted the “potential energy”U ¼ −

R
dQcFðσ; QcÞ.

Coexistence requires two Qc values that have the same
“potential energy” U. The coexisting phases can be either
finite-sized or macroscopic, depending on the value of F.
Macroscopic phases occur for F ¼ 0, where it takes an
infinite “time” for the Newtonian particle to switch between
the phases. These two conditions set Ql, the nematic order
in the dense liquid phase, as well as −σ ¼ ρg, the density in
the isotropic gas phase. To summarize, we require that
Qc ¼ 0; Ql are equally valued maxima of U at the binodal.
We highlight the effect of the environment by focusing

on two limits: a cell-dominated interaction Uðβm ¼ 0Þ ¼
Uc where there is no matrix, and a matrix-dominated one
Uðβc ¼ 0Þ ¼ Um, where the cells are aligned only by the
matrix. Explicitly,

UcðQcÞ ¼
Z

Qc

0

dQ½ρcðQÞgðβcQÞ −Q�;

UmðQcÞ ¼
Z

Qc

0

dQ
�
ρcðQÞg�fβmqcðQÞ� −Q

�
; ð6Þ

where fβm ¼ ρmβm. The difference between the two cases is
the magnitude of the total nematic tensor (Qt), which
appears as the argument of the nonlinear g function. In the
cell-dominated case, the argument scales as the extensive
Qc that vanishes at small densities and the matrix-domi-
nated cases as the intensive qc. The two potentials are
plotted in Fig. 2(c).
The intensive nematic order qc in the cell-dominated

case is a function of βcρc [Eq. (4)] and both the spinodal
and binodal lines are given by βcρc ¼ const, as is displayed
on Fig. 2(a). In particular, we find that the nematic order at
the liquid binodal βcQl is not necessarily small [19].
Therefore, we cannot find it from an expansion of Uc,
but rather from its full nonlinear form that we evaluate
numerically [and see Fig. 2(c)]. We find that there is indeed
a macroscopic coexistence between an isotropic gas and
nematic liquid, obtained from the maxima of Uc for a
specific value of ρg. The value ρl is then found by requiring
a fixed stress, i.e., ρg ¼ ρl þQl=ð1þ 2DÞ. Coexistence

was validated by numerical solutions of Eq. (2) in 1D [33],
plotted in Fig. 2(d).
The situation is very different in the matrix-dominated

case. The value of qc in this case depends only on fβm
[Eq. (4)]. We expand for small Qc and find Um ∼
−Q2

c

�
Q2

c − 16σ2fβm−3�−2þ fβm��. In this case, Qc ¼ 0 is
a local minimum and the global maxima are Qc ¼
�2σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifβm−3�−2þ fβm�q
.

Equation (4) ensures that for any solution qc ¼ q of
F ¼ 0, qc ¼ −q is also a solution. It can be shown
analytically [19] that qc < 0 is the global maximum, while
qc > 0 is a local one, as demonstrated by a numerical plot
of Um in Fig. 2(c). This form of Um allows for coexistence
between finite domains with nematic order in the x and y
directions. For example, a nematic order qc ¼ q > 0,
forced by surface anchoring, will transition to qc ¼ −q
in the bulk, along a thickness that diverges logarithmically
with fβm − 2 [19].
The coexistence between differently oriented domains is

verified by numerical solutions of Eq. (2) in 1D [33],
plotted in Fig. 2(e). This new type of coexistence is possible
because cells order at arbitrarily low densities. Then, cells
aligned along the x direction at very low densities can exert
a positive active stress that matches σ. The exact form of
coexistence profiles depends on angular dynamics, as
explained next.
Angular dynamics—matrix possibly arrests domain

coarsening: Finally, we focus on angular dynamics.
While the system is invariant under global rotations of
the cells and matrix together, their preferred mutual align-
ment results in a finite relaxation rate of their relative angle
that is independent of system size. We define the angle
between the preferred axis of the cells and the x axis as ϕc
such that the two independent terms in Qc are
Qc cosð2ϕcÞ=2 and Qc sinð2ϕcÞ=2. We similarly define
ϕm for the matrix. The relative angle between them is
α=2 ¼ ϕc − ϕm. We rewrite Eq. (2) in terms of Qc, Qm, ϕc,
and ϕm, and find that [19]

∂tα ¼ −
	
kβmρm

qm
qc

gðQtÞ
Qt

þ kþ
ρc
ρm

qc
qm



sin α; ð7Þ

where we have included the timescale 1=k explicitly. Note
that all the densities and nematic orders also evolve in time
and are coupled with α, e.g., via shear alignment.
The two terms in the parenthesis on the right-hand side

of Eq. (7) describe the dynamics of the cells and matrix,
respectively. In the ordered state, their characteristic rates
scale as kβmρm=ðβmρm þ βcρcÞ and k−ρc, respectively [19].
The cellular rate depends on the typical cellular reorienta-
tion rate and the strength of its alignment to the matrix field,
while the matrix rate is defined by the degradation rate.
The interplay between these two rates determines whether
the cells are free to rotate with the matrix constantly
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remodeling according to the cells ½k−ρc ≫ kβmρm=
ðβmρm þ βcρcÞ� or the cells are pinned to the matrix
½k−ρc ≪ kβmρm=ðβmρm þ βcρcÞ�.
The latter implies that suppression of cellular relaxation

dynamics. For example, consider ordered cellular domains
of typical size l with different orientations (different ϕc
values), such as alternating bands of width l. As long as
kβmρm=ðβmρm þ βcρcÞ ≫ Dt=l2, k−ρc, we expect these
domains to remain frozen rather than relax into a common
orientation, as is the usual case (see Supplemental Material
figure in [19]). Here, we have denoted Dt as the total
translational diffusion coefficient. In our model, it is given
by Dt ¼ Dþ v2=ð4kÞ.
Discussion—This work demonstrates how environment-

stored memory qualitatively changes the known behavior of
active nematics. The underlying mechanism is generic:
active particles generate a finite external field even for
vanishing densities. Our findings open an avenue for novel
behavior of active systems. Arrested domain coarsening, for
example, suggests that the steady state may contain a
signature of the initial conditions. Environment-induced
relaxation dynamics should also slowdown defect dynamics
(as was shown very recently in [34]) and possibly arrest
typical instabilities, such as nematic bands at coexistence [1]
and flow transitions [30]. Finally, this may also decrease the
role of fluctuations beyond mean field.
Our finding are useful in understanding ECM remodeling

by cells and its consequences on cellular and tissue dynam-
ics. We focus on quasi-2D, in vitro studies of fibroblasts and
their derived matrices (see, e.g., Ref. [9]). The cells
exchange momentum with the underlying substrate, as is
the case in “dry” active systems. The rigid substrate also
suppresses elastic matrix deformations. Nevertheless, ECM
displays orientational order for cellular densities of the
order 10−4 μm−2, which correspond to ρc ≈ 10−2, as can be
explained by thememory effect in our theory (see also [15]).
Whilematrix elasticity is considerablymore important in 3D
systems, it may still play some role in 2D and is expected to
serve as another mechanism for alignment [35,36].
Generally, ECM rheology is complex, including visco-
plastic contributions [37].
It was recently reported [8] that fibroblast-ECM inter-

action promotes alignment in nonaligned ECMs, but may
also decrease the range of alignment. This is explained by
our theory in a simple way: increasing the interaction
means a larger cellular aligning field Qt, leading to align-
ment. At the same time, increasing βm also increases the
rate of cellular relaxation to the matrix, and may thus
suppress domain coarsening. For dilute cells, the degrada-
tion rate k−ρc is negligible, and the memory effect of the
matrix persists for long times. Assuming that the transla-
tional diffusion is mainly active (Dt ∼ v2=k), we predict a
domain size of the order of the cellular persistence length,
i.e., of the order 10 μm. This is consistent with exper-
imental findings [8,9]. In a future work, we will further

apply our framework to predict ECM patterns observed
in vivo.
In conclusion, our work demonstrates the profound

effect of environment-stored memory on the steady state
and dynamics of active nematics, especially in the bio-
logical context of ECM remodeling. It is generic in nature
and is expected to play a similar role in additional active
systems, including polar and synthetic.

Acknowledgments—We thank Erik Sahai and Raphaël
Voituriez for useful discussions.
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