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Polymers are an effective test bed for studying topological constraints in condensed matter due to a wide
array of synthetically available chain topologies. When linear and ring polymers are blended together,
emergent rheological properties are observed as the blend can be more viscous than either of the individual
components. This emergent behavior arises since ring-linear blends can form long-lived topological
constraints as the linear polymers thread the ring polymers. Here, we demonstrate how the Gauss linking
integral can be used to efficiently evaluate the relaxation of topological constraints in ring-linear polymer
blends. For majority-linear blends, the relaxation rate of topological constraints depends primarily on
reptation of the linear polymers, resulting in the diffusive time τd;R for rings of length NR blended with
linear chains of length Nl to scale as τd;R ∼ N2

RN
3.4
L .
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Topological constraints are long-lived interactions
between atomic degrees of freedom that arise from the
entanglement of some element of their phase spaces. They
drive a variety of exotic nonlinear dynamics across an array
of fields: stabilizing solitons in nonlinear optics [1,2],
hydrodynamic vortices in both classical [3–5] and quantum
fluids [6], and fractional electronic states in topological
insulators and quantum spin liquids. For most of these
systems, the origin of the topological entanglement is
subtle and difficult to visualize or characterize directly.
The dynamics of polymer melts and blends are also

dominated by topological entanglement, but unlike many
quantum systems, this entanglement arises from the inter-
weaving, threading, and knotting of the polymer chains in
real space. Biological systems in particular have a rich array
of topological interactions that can occur, from linking of
DNA rings and chromosomes upon replication to complex
knotting in folded proteins [7–10].
While soft matter and quantum systems are typically

viewed as different fields, the mathematical structure of
models of polymer melts is nearly identical to that for many
quantum systems [11,12], so much so that some quantum
problems are simulated using ring polymers [13]. In
addition, polymers have the advantage of a large body
of synthetic and characterization data compared to many
other fields due to advances that allow for synthesis of
polymers with nearly arbitrary size and chain topology.
This makes entangled synthetic polymer melts an ideal and
economical test bed for exploring the dynamics of systems

with complex topological constraints, which occur in a
variety of fields.
For melts of linear polymers, there are mature techniques

to evaluate topological constraints. These include contour
reduction algorithms [14,15] and isoconfigurational aver-
aging [16]. Topological constraints in ring polymers, in
contrast, have been more difficult to measure. Additionally,
recent studies have found that neat ring polymers have
significantly different rheological properties from linear
polymers due to the differences in knotting and entangle-
ment [17–24]. When ring and linear polymers are blended
together, emergent rheological properties are observed as
the blend can be more viscous than either of the individual
components [25–27]. This emergent behavior has been
ascribed to the fact that ring-linear blends can form
topological constraints via linear polymers threading the
ring polymer (Fig. 1) and these ring-linear threads are
presumed to be long lived.
Thus far, direct observation of the ring-linear threading

or dethreading process has been difficult in experiments or
simulations. In this work we use recently implemented
topology tools to directly measure ring-linear thread
relaxation in simulations of ring-linear polymer blends.
We perform coarse-grained molecular dynamics (MD)

simulations of polymer melts where individual polymers
are modeled by bead-spring chains with FENE bonds and
all beads interact via purely repulsive Lennard-Jones
interactions characterized by energy ϵ and distance σ
[28]. Model details are presented in the Supplemental
Material [29]. Linear chains contain NL beads and rings
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contain NR beads. All simulations are conducted in cubic
cells with periodic boundary conditions at a particle mass
density of 0.85 m=σ3, where m is the mass of a bead.
Unconcatenated ring polymers were constructed according
to previously published methods [30] and blends of various
ring volume fraction ϕR were constructed by removing a
bond from some rings to convert them into linear chains.
Simulations are conducted with a Langevin thermostat at
temperature T ¼ ϵ=kB with damping parameter 100τ and
were time integrated using a velocity-Verlet algorithm with
time step 0.01τ, where τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

mσ2=ϵ
p

is the Lennard-Jones
time. All simulations were conducted using LAMMPS
[31]. System sizes and equilibration times are given in the
Supplemental Material [29]; the blends contained up to
960 000 particles and were simulated for up to 1010 time
steps (108τ).
To evaluate ring-linear threads, we use an approach

based on the Gauss linking integral (GLI), which has
recently been implemented in a parallel, open-source code
TEPPP [32]. As a postprocessing step of our simulations, the
periodic linking number LP (a generalization of the linking
number to periodic simulations [33,34]) is computed
between all pairs of ring and linear chains. Any pair of
chains with jLPj > 0.5 is consider threaded. The periodic
linking number can take any real value as we do not invoke
a closure approximation on the linear chain, unlike

previous work [35]. All beads from the linear chain are
included in the analysis, unlike previous work which
excluded beads that were within one entanglement length
Ne of the chain end [36]. To further characterize the time
dependence of threads, we construct a thread correlation
function, CðtÞ, analogous to the intermittent association
correlation function used to study ion associations in
solution [37–40]. Details of the linking number calculation,
thread cutoff, and correlation function are discussed further
in the Supplemental Material [29]. The number of ring-
linear threads has also been counted via other techniques
such as primitive path analysis with contact mapping [36],
minimal surfaces [30,41,42], and persistent homology [43],
though most of these authors have not been able to measure
the dynamics of threading nor multiple threads.
The dynamics of individual ring and linear polymers are

characterized by the diffusion time τd. Here we define τd as
the time for the mean squared displacement (MSD) of a
bead g1ðτdÞ ¼ h½ΔrðτdÞ�2i to move 3hR2

gi, where Rg is the
radius of gyration of a chain [44]. An example of the MSD
of the center of mass g3ðtÞ motion and of a bead g1ðtÞ are
presented in Fig. 2 for rings of length NR ¼ 400 in a pure
ring melt and in a blend with ϕR ¼ 0.3 with varying length
of the linear chains 100 ≤ NL ≤ 600. Figure 2 clearly
shows how as NL increases, the ring motion becomes
subdiffusive as the rings have to “wait” for the linear chains
to release the topological constraints before the ring can
relax. While the motion of the rings depends strongly on
the length of the linear chains, the motion of the linear is
hardly affected by the presence of the rings as shown in
Fig. S6 of [29].
Theories for chain dynamics in ring-linear blends posit

that rings that are threaded by linear chains cannot diffuse
until the topological constraint imposed by the thread is
released via linear chain reptation (as seen in the MSD
plots). The classical constraint release model assumes that
there are NR=Ne threads per ring and that the threads are
released independently [45]. The timescale for an

FIG. 1. (a) Snapshot of three ring polymers (red, NR ¼ 200)
threaded by a linear polymer (blue, NL ¼ 600) from a molecular
dynamics simulation. The initial configuration is faded and the
final configuration is shown in bold. In the final configuration, the
right ring is no longer threaded. (b) Drawing of the dethreading of
the right ring polymer due to motion of the linear chain. The
initial configuration is shown with a dashed line and the final
configuration is shown with the solid line. Chain ends are marked
with circles.

FIG. 2. Mean-squared displacement of ring polymers of length
NR ¼ 400 in pure melts (black squares) or blends with ϕR ¼ 0.3
(all other symbols). Mean squared displacement of the center of
mass g3ðtÞ is shown with open symbols and motion of a monomer
g1ðtÞ with filled symbols.
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individual relaxation event scales with the linear chain
diffusion time, which scales with the linear chain size as
τd;L ∼ N3.4

L . The Rouse-like constraint release time for the
ring polymer then scales like τd;R ∼ N2

RN
3.4
L for blends in

which rings are sufficiently dilute so as to not interact with
other rings. If the linear chains are short, however, there will
be a crossover to unentangled ring Rouse relaxation where
the diffusion time of the ring scales like τd;R ∼ N2

R and is
independent of linear chain size.
The diffusion time for ring polymers in blends with

linear polymers of equal chain length NR ¼ NL ¼ N as a
function of linear chain length is shown in Fig. 3(a). The
diffusion time τd of ring polymers increases as N5.4, in
agreement with theory. In contrast, pure ring polymers have
a diffusion time that can be fit to an apparent power law

τd ∼ N2.8
R [Fig. 5(b)] and pure, entangled linear polymers

have a diffusion time that scales as N3.4
L [18].

We next examine the effect of the linear chain size on the
relaxation of the rings. We fix the ring size (NR ¼ 200 or
NR ¼ 400) and vary the linear chain length as shown in
Fig. 3(b). The open symbols show the diffusion time of the
linear chains, which scales like N3.4

L , which is expected for
entangled linear polymers. For the model considered here,
the linear chain entanglement length is Ne ≈ 28 [44]. For
sufficiently long linear polymers, the ring polymer diffu-
sion time also follows the N3.4

L scaling. However, for short
linear chains, the ring polymer diffusion has a weaker
dependence on NL and can be fit to a crossover to
unentangled ring polymer scaling τd;R ∼ N0

L. The solid
lines are a fit to a crossover function [Eq. (S9)] that includes
the N3.4

L and N0
L limits. The fit indicates a crossover NL

value around 80.
The thread relaxation CðtÞ for blends with ϕR ¼ 0.3,

NR ¼ 200, and variable NL is shown in Fig. 4(a). CðtÞ
shows a similar shape for all NL, but with shifted time-
scales. These data can be collapsed by choosing a value of
the correlation function, in this case 0.5, and rescaling time
for each curve so that all curves overlap at the chosen value.
The time-rescaled data is given in Fig. 4(b) and the inset
shows the times τ0.5 used to collapse all the data versus the
diffusion time τd;L of the linear chains. The CðtÞ curves
collapse nearly perfectly onto each other, indicating that the
dethreading dynamics is similar with increasing linear
polymer size.
The inset shows that τ0.5 is directly proportional to the

linear chain diffusion time, though it is smaller by a factor
of 1=4 for blends with ϕR ¼ 0.3 and NR ¼ 200. To relax
the thread only requires a portion of the linear chain to
reptate through the ring, so it is expected for the dethread-
ing time to be less than the diffusion time.
We now evaluate the effect of the ring polymer size on

the chain diffusion and dethreading. When varying NR one
must be careful to note that small rings and large rings in

FIG. 3. Diffusion times for ring (filled symbols) and linear
polymers (open symbols) versus linear chain length NL in a ring-
linear blend with (a) equal ring and linear polymer length,
(b) fixed ring polymer length and ring fraction ϕR ¼ 0.3. Solid
lines indicate fitted crossover functions from Eq. (S9).

FIG. 4. (a) Dethreading correlation function CðtÞ for a ring-linear blend with ring fraction ϕR ¼ 0.3, ring length NR ¼ 200, and
various linear chain lengthsNL. (b)CðtÞ versus t=τ0.5, where τ0.5 is the time at which only 50% of the original ring-linear threads remain,
which is different for each linear chain length NL. The inset shows the thread relaxation timescale τ0.5 versus the diffusion time for a
linear chain, τd;L.
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pure ring melts have different scaling behavior. In pure ring
melts, small rings are almost unperturbed Gaussian rings
with size that scales like R2

g ∼ N. As the size of the ring
increases, the rings impinge on each other and there is a
crossover to a loopy globule scaling regime where R2

g ∼
N2=3 [46]. Rings in ring linear blends are expected to follow
R2
g ∼ NR if the rings are sufficiently diluted by linear

chains. If a critical ring concentration is exceeded in the
blend, then the large ring scaling R2

g ∼ N2=3
R will be

recovered. The critical concentration is a function of the
ring size, so increasing ring polymer size at fixed volume
fraction of rings may cause one to cross the critical
concentration.
Figure 5(a) shows the mean squared radius of gyration of

ring polymers in ring-linear blends (ϕR ¼ 0.3 and
ϕR ¼ 0.5) and pure ring melts (ϕR ¼ 1.0) versus the size
of the rings NR. The linear chains have length NL ¼ 200 in
the blends. The data in Fig. 5(a) were fit to a crossover
function [Eq. (S10)] and a crossover NR was extracted for
the blends and the pure rings. For blend systems the
crossover occurs for NR ¼ 445 (ϕR ¼ 0.3) or NR ¼ 328

(ϕR ¼ 0.5), so most of the data lies in the dilute-ring
scaling regime. For the pure ring melts (ϕR ¼ 1) the
crossover occurs for NR ¼ 122, so most of the data lie
in the concentrated ring regime.
The diffusion times for ring polymers are shown in

Fig. 5(b). For rings that are of similar size to the linear
chains (100 ≤ NR ≤ 400), the ring diffusion time in the
blends (red and black points) is an order of magnitude
larger than in the pure ring melt (blue points). In this regime

the ring motion is dominated by ring-linear threadings,
which are slow to relax. For small rings (NR ≤ 50) the
diffusion times in blends are much closer to the diffusion
time in the pure ring melt. This is because the rings are so
small that they have ∼0 − 2 threads [Fig. 6(a)], and thus too
few topological constraints to slow them relative to the pure
ring melt. For larger rings (NR ≥ 800), the blend and pure
melt diffusion times approach in value as the blend rings
become increasingly constrained by ring-ring interactions
which are similar between blends and pure ring melts.
The number fraction of rings with a given number of

linear chains threading the ring, Nt, is shown in Fig. 6(a).
The solid points show Nt measured in GLI analysis of MD
simulations. Open symbols indicate a Poisson distribution
with the same mean as simulations. For the smallest ring
sizeNR ¼ 50, the majority of rings have two or fewer linear
chains threading, and 17% of rings have no linear chains
threading them at all. As the ring size NR is increased, the
distribution of number of threads broadens and moves to
larger mean values, consistent with previous investigations
[35,42]. Notably the Poisson distribution fits the measured

FIG. 5. (a) Radius of gyration Rg and (b) diffusion time τd for
ring polymers versus ring chain length NR in a ring-linear blends
and a pure ring melt. In the blends, the linear chain length
NL ¼ 200. Solid lines in part (a) indicate fit to crossover
functions given in Eq. (S10).

FIG. 6. (a) Number fraction of ring polymers with a given
number of linear polymers threading the ring, Nt. Linear
polymers have length NL ¼ 200 and ϕR ¼ 0.3. Solid dots
indicate results from MD simulations. Open symbols indicate
a Poisson distribution with identical mean to the MD results. Inset
shows the average number of linear chains threading the ring N̄t
versus ring polymer sizeNR. (b) Dethreading correlation function
CðtÞ versus time t for the same blends as in (a).
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distribution well for all NR. This may indicate that ring-
linear threads are independent of each other. The inset of
Fig. 6(a) shows the average number of linear chains
threading a ring, N̄t, versus the ring size NR. The average
number of linear chains threading a ring increases linearly
with the ring size, N̄t ∼ NR, which is consistent with
previous results based on primitive path analysis [36]
and minimal surfaces [42].
The dethreading correlation function for the blends with

ϕR ¼ 0.3 is shown in Fig. 6(b). For times t=τ < 105 the
curves overlap. Note that no rescaling of time has been
performed, unlike in Fig. 4(b). The overlapped curves
indicate that dethreading dynamics at short times is largely
independent of ring size. This indicates that it is the motion
of the linear that largely drives dethreading, consistent with
previous work.
At long times, CðtÞ decays to zero more quickly for

smaller rings whereas larger rings have a slow relaxing
component that gets slower with increasing ring size. The
universal functional form that was observed for linear
polymers of different sizes in the blends does not occur
for rings. Thus, blending ring and linear polymers has an
asymmetric effect where thread relaxation has a compli-
cated dependence on ring polymer size and diffusion, but
for linear chains depends only on the diffusion time.
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[24] R. Staňo, C. N. Likos, and J. Smrek, Soft Matter 19, 17
(2023).

[25] J. Roovers, Macromolecules 21, 1517 (1988).
[26] K. R. Peddireddy, M. Lee, C. M. Schroeder, and R. M.

Robertson-Anderson, Phys. Rev. Res. 2, 023213 (2020).
[27] D. Parisi, M. Kaliva, S. Costanzo, Q. Huang, P. J. Lutz, J.

Ahn, T. Chang, M. Rubinstein, and D. Vlassopoulos,
J. Rheol. 65, 695 (2021).

[28] K. Kremer and G. S. Grest, J. Chem. Phys. 92, 5057 (1990).
[29] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.133.118101 for poly-
mer model, linking number analysis, mean-squared dis-
placements, and crossover functions.

[30] J. Smrek, K. Kremer, and A. Rosa, ACS Macro Lett. 8, 155
(2019).

[31] A. P. Thompson, H. M. Aktulga, R. Berger, D. S.
Bolintineanu, W.M. Brown, P. S. Crozier, P. J. in ’t Veld,

PHYSICAL REVIEW LETTERS 133, 118101 (2024)

118101-5

https://doi.org/10.1038/432165a
https://doi.org/10.1088/1751-8113/43/38/385203
https://doi.org/10.1017/S0080456800028179
https://doi.org/10.1017/S0370164600045430
https://doi.org/10.1038/nphys2560
https://doi.org/10.1103/PhysRevE.85.036306
https://doi.org/10.1103/PhysRevE.85.036306
https://doi.org/10.1126/science.1181369
https://doi.org/10.1126/science.1181369
https://doi.org/10.1016/j.gde.2012.01.006
https://doi.org/10.1016/j.gde.2012.01.006
https://doi.org/10.1073/pnas.1815394116
https://doi.org/10.1073/pnas.1815394116
https://doi.org/10.1016/j.physrep.2024.04.002
https://doi.org/10.1063/1.441588
https://doi.org/10.1063/1.441588
https://doi.org/10.1063/1.1777575
https://doi.org/10.1063/1.1777575
https://doi.org/10.1002/polb.20384
https://doi.org/10.1021/ma0607057
https://doi.org/10.1021/ma0607057
https://doi.org/10.1021/ma2012333
https://doi.org/10.1021/ma2012333
https://doi.org/10.1063/1.460889
https://doi.org/10.1063/1.460889
https://doi.org/10.1063/1.3587138
https://doi.org/10.1021/acs.macromol.5b00076
https://doi.org/10.1021/acs.macromol.5b00076
https://doi.org/10.1021/acs.macromol.5b02319
https://doi.org/10.1021/acs.macromol.5b02319
https://doi.org/10.1021/acs.macromol.0c02839
https://doi.org/10.1021/acs.macromol.2c01264
https://doi.org/10.1021/acs.macromol.2c01264
https://doi.org/10.1021/acspolymersau.2c00069
https://doi.org/10.1021/acspolymersau.2c00069
https://doi.org/10.1039/D2SM01177H
https://doi.org/10.1039/D2SM01177H
https://doi.org/10.1021/ma00183a049
https://doi.org/10.1103/PhysRevResearch.2.023213
https://doi.org/10.1122/8.0000186
https://doi.org/10.1063/1.458541
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.118101
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.118101
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.118101
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.118101
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.118101
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.118101
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.118101
https://doi.org/10.1021/acsmacrolett.8b00828
https://doi.org/10.1021/acsmacrolett.8b00828


A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan, M. J.
G, J. Tranchida, C. Trott, and S. J. Plimpton, Comput. Phys.
Commun. 271, 108171 (2022).

[32] T. Herschberg, K. Pifer, and E. Panagiotou, Comput. Phys.
Commun. 286, 108639 (2023).

[33] E. Panagiotou, C. Tzoumanekas, S. Lambropoulou, K. C.
Millett, and D. N. Theodorou, Prog. Theor. Phys. Suppl.
191, 172 (2011).

[34] E. Panagiotou, J. Comput. Phys. 300, 533 (2015).
[35] K. Hagita and T. Murashima, Polymer 218, 123493

(2021).
[36] T. C. O’Connor, T. Ge, and G. S. Grest, J. Rheol. 66, 49

(2022).
[37] A. Luzar and D. Chandler, Phys. Rev. Lett. 76, 928 (1996).
[38] F. Müller-Plathe, J. Chem. Phys. 108, 8252 (1998).

[39] A. Chandra, Phys. Rev. Lett. 85, 768 (2000).
[40] W. Zhao, F. Leroy, B. Heggen, S. Zahn, B. Kirchner, S.

Balasubramanian, and F. Müller-Plathe, J. Am. Chem. Soc.
131, 15825 (2009).

[41] J. Smrek and A. Y. Grosberg, ACS Macro Lett. 5, 750
(2016).

[42] W. Wang, J. Lu, and R. Sun, Polymer 290, 126513 (2024).
[43] F. Landuzzi, T. Nakamura, D. Michieletto, and T. Sakaue,

Phys. Rev. Res. 2, 033529 (2020).
[44] H.-P. Hsu and K. Kremer, J. Chem. Phys. 144, 154907

(2016).
[45] D. Parisi, J. Ahn, T. Chang, D. Vlassopoulos, and M.

Rubinstein, Macromolecules 53, 1685 (2020).
[46] M. Kruteva, J. Allgaier, and D. Richter, Macromolecules 56,

7203 (2023).

PHYSICAL REVIEW LETTERS 133, 118101 (2024)

118101-6

https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1016/j.cpc.2022.108639
https://doi.org/10.1016/j.cpc.2022.108639
https://doi.org/10.1143/PTPS.191.172
https://doi.org/10.1143/PTPS.191.172
https://doi.org/10.1016/j.jcp.2015.07.058
https://doi.org/10.1016/j.polymer.2021.123493
https://doi.org/10.1016/j.polymer.2021.123493
https://doi.org/10.1122/8.0000319
https://doi.org/10.1122/8.0000319
https://doi.org/10.1103/PhysRevLett.76.928
https://doi.org/10.1063/1.476180
https://doi.org/10.1103/PhysRevLett.85.768
https://doi.org/10.1021/ja906337p
https://doi.org/10.1021/ja906337p
https://doi.org/10.1021/acsmacrolett.6b00289
https://doi.org/10.1021/acsmacrolett.6b00289
https://doi.org/10.1016/j.polymer.2023.126513
https://doi.org/10.1103/PhysRevResearch.2.033529
https://doi.org/10.1063/1.4946033
https://doi.org/10.1063/1.4946033
https://doi.org/10.1021/acs.macromol.9b02536
https://doi.org/10.1021/acs.macromol.3c00560
https://doi.org/10.1021/acs.macromol.3c00560

