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We study a liquid-gas coexistence system in a container under gravity with heat flow in the direction
opposite to gravity. By molecular dynamics simulation, we find that the liquid buoys up and continues to
float steadily. The height at which the liquid floats is determined by a dimensionless parameter related
to the ratio of the temperature gradient to gravity. We confirm that supercooled gas remains stable above
the liquid. We provide a phenomenological argument for explaining the phenomenon from a simple
thermodynamic assumption.
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Introduction—Clouds float in the sky although they are
heavier than the surface air. According to the standard
theory, thermal convection caused by the temperature differ-
ence between the sea surface and the atmosphere forms
cumulonimbus clouds hovering over the sea [1–3]. While
cloud formation may involve various complex processes,
convection certainly plays a significant role in this phe-
nomenon. The Leidenfrost effect is another phenomenon of
a liquid floating above a gas [4–7]. When we drop a droplet
onto a hot plate, heat transfers violently from the plate to the
droplet. The droplet then evaporates instantly, and the vapor
envelops the droplets and causes them to float. Even in this
case, a complex flow of materials appears.
Motivated by these phenomena, we investigate the

possibility that a liquid can float over a gas against gravity
when a heat flux is imposed without convection. In
equilibrium phase coexistence under gravity, a phase with
a higher mass density is located below a phase with a lower
mass density. Supposing that the phase with a higher mass
density is preferable at low temperatures, such as a liquid
phase in liquid-gas coexistence, a somewhat frustrating
situation occurs when the heat flux is imposed against
gravity. Therefore, it might be possible that the liquid floats
over the gas against gravity.
In this Letter, we explore the phenomenon through

molecular dynamics simulations. We find that when the
directions of the gravitational force and the heat flux are
opposite to each other, the liquid floats over the gas. No
convection occurs, but a persistent heat flux generates an
extra force balanced with gravity. The height of the floating

liquid is characterized by a dimensionless parameter that
represents the ratio of the temperature gradient to gravity.
This scaling relation enables us to quantitatively predict the
height of the floating liquid in a real experimental setup.
Furthermore, we show that if a steady state is realized in the
setup, there should be a region where the metastable states
at equilibrium become stable under gravity and heat flow.
In particular, the liquid floats only when the gas in the low-
temperature region is supercooled at equilibrium.
Setup—Liquid-gas transition occurs universally for any

molecular system and even for noble gases without electric
interactions. The noble gases have been modeled as simple
systemsusing aLennard-Jones potential, which is suitable for
numerically studying various dynamic behaviors led by
transitions [8–22]. In our numerical simulations, we confine
N particles in a rectangular containerwith a heightLx and side
lengths Ly and Lz, or height Lx and side length Ly in two-
dimensional cases, under gravity. For a collection of particle
positions and momenta, Γ ¼ ðr1; r2;…; rN; p1; p2;…; pNÞ,
we assume the Hamiltonian as

HðΓÞ ¼
X

i

�jpij2
2m

þ
X

j<i

ϕðjri − rjjÞ þmgxi þ VwallðriÞ
�
;

ð1Þ

wherem is the mass of the particles, and g is the gravitational
acceleration. The two-body interaction potential ϕ is the
12-6 Lennard-Jones interaction

ϕðrÞ ¼ 4ε

��
σ

r

�
12

−
�
σ

r

�
6
�
θðrc − rÞ: ð2Þ

Here, r is the distance between two particles, ε is the well
depth, σ is the particle diameter, rc is the cutoff length of the
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interaction, and θðrc − rÞ is the Heaviside step function.
In the simulations, we set the cutoff length as rc ¼ 3σ.
We assume a fixed boundary condition at x ¼ 0 and x ¼ Lx
using a soft-core repulsive wall represented by VwallðriÞ,
where we adopt the Weeks-Chandler-Andersen potential to
truncate the attracting interaction in (2) [23].Other boundaries
in the y and z directions are periodic.
The container is in contact with two heat baths at the

top and bottom. To represent this setup, we perform
molecular dynamics simulations with Langevin thermostats
having two temperatures TH and TC. Each molecule
evolves according to

ṗi ¼ −
∂H
∂ri

−
γðxiÞ
m

pi þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γðxiÞkBTbðxiÞ

p
ξiðtÞ; ð3Þ

with ṙi ¼ pi=mi, where γðxiÞ ¼ 1 and TbðxiÞ ¼ TH in the
region 0 < xi < 8σ, γðxiÞ ¼ 1 and TbðxiÞ ¼ TC in the
region Lx − 8σ < xi < Lx, and γðxiÞ ¼ 0 in 8σ ≤ xi ≤
Lx − 8σ. ξiðtÞ ¼ (ξxi ðtÞ; ξyi ðtÞ; ξzi ðtÞ) is Gaussian white
noise that satisfies hξai ðtÞi ¼ 0 and hξai ðtÞξbj ðt0Þi¼
δi;jδa;bδðt− t0Þ, where a and b are x, y, or z. We study
the cases where TH and TC are far below the critical point
and far above the crystallization temperature. The width of
the thermostatted region, 8σ, is sufficiently large compared
to the mean free path in the liquid but comparable in the
gas. For later convenience, we define the middle temper-
ature as Tm ¼ ðTH þ TCÞ=2 and the temperature difference
as ΔT ¼ TH − TC.
Observation—We first prepared the equilibrium liquid-

gas coexistence under gravity. We set the mean number
density N=ðLxLyLzÞ and the temperature Tm so that the
volume ratio of the gas and liquid was almost 1. Figure 1(a)
shows a typical configuration after sufficient relaxation for
the system with the aspect ratio Lx∶ Ly∶Lz ¼ 4∶1∶1 for
ΔT ¼ 0. We see that the dense liquid is located in the lower
region owing to gravity.
We then changed the values of TH and TC with kBΔT ¼

0.1ε while keeping the temperature T at the middle value.
Starting from the equilibrium state in Fig. 1(a), we find that
the bulk of the liquid floats up gradually without separating
into drops and then keeps hovering as shown in a snapshot
of the particle configuration in Fig. 1(b). The relaxation
process to a floating state is also shown in [24].
To characterize the steady state, we calculated the

number density per unit volume and the temperature
profiles

ρðxÞ¼
P

ihδðx−xiÞi
LyLz

; TðxÞ¼
P

ihδðx−xiÞjpij2i
3kBLyLzmρðxÞ ; ð4Þ

where h·i is the long-term average after the relaxation. In
Fig. 2, ρðxÞ shows two sharp interfaces separating the
liquid and gas layers. This means that the liquid layer is
hovering and stationary. Correspondingly, TðxÞ shows

three regions with different slopes. The respective slopes
result in a uniform heat current parallel to x. The local
velocities in the steady hovering state suggest that there is
no convection in the hot-gas layer occupying the lower
region [24].
The liquid-hovering state is also observed in two-

dimensional systems with Lx∶ Ly ¼ 2∶1. Some examples
of the snapshot and the time evolution in two dimensions
are displayed in [24]. Below, we concentrate on two-
dimensional systems to examine the properties of the
hovering state.
Condition for hovering—We confirmed that the liquid

hovers stationary under gravity and heat flow by varying
the parameters of the container. The details of the following
examples are demonstrated in [24]. When the lateral
boundary conditions are changed to be fixed, the floating
liquid becomes slightly round owing to the repulsive
interaction with the side walls. The liquid continues
to float without separating into pieces even when the

(a) (b)

FIG. 1. Snapshots of the steady states under a gravitational
force of mg ¼ 6.25 × 10−5ε=σ, kBTm ¼ 1.0ε, and mean density
N=LxLyLz ¼ 0.3=σ3. (a) kBΔT ¼ 0, (b) kBΔT ¼ 0.1ε. The
aspect ratio is Lx∶ Ly∶Lz ¼ 4∶1∶1, and the system size is
Lx ¼ 191σ corresponding to N ¼ 131, 072. The width of each
thermostatted region is 4.2% of Lx.

FIG. 2. Steady-state profiles of the number density ρðxÞ and
temperature TðxÞ for the system in Fig. 1(b) with χ ¼ 8.37. The
error bars are smaller than the symbols.
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container is horizontal with Lx∶Ly ¼ 1∶2. However, when
we impose wet boundary conditions using attractive inter-
actions between each particle and the top or bottom walls,
we observe that the liquid sticks to the top or bottom
boundary, or exhibits nonstationary motion.
We then focused on the original boundary condition

mentioned in the setup at the beginning. We took a mean
density N=ðLxLy=σ2Þ ¼ 0.4 and kBTm=ε ¼ 0.43 such that
the volume ratio of the liquid and gas was almost 1. The
aspect ratio was fixed as Lx∶Ly ¼ 2∶1. To characterize the
hovering state, we examined how the center of mass

X ¼
X

i

hxii
N

ð5Þ

depends on the temperature difference ΔT and the gravita-
tional acceleration g and attempted to determine the func-
tional form of Xðg;ΔTÞ when ΔT > 0 and g > 0. We
calculated X for four values of kBΔT with changing g for
Lx ¼ 158σ (N ¼ 5.0 × 103). The important result is that
Xðg;ΔTÞ can be expressed in terms of a scaling function.
We first notice that the one-particle kinetic energy difference
between the top and the bottom is kBΔT. This quantity
should be comparable with the potential energy difference
mgLx. We then define the dimensionless parameter

χ ≡ kBΔT
mgLx

: ð6Þ

In Fig. 3, we plot Xðg;ΔTÞ=Lx as a function of χ. We find
that the data collapse on a single curve, X ¼ XðχÞ. That is,
the system is invariant for the transformation of ðg;ΔTÞ →
ðαg; αΔTÞ with any positive real α. This result implies that
the temperature gradient plays the same role as the gravi-
tational force.
To check the system size dependence, we examined XðχÞ

for Lx ¼ 632σ (N ¼ 8.0 × 104) fixing kBΔT ¼ 0.04ε and
found the slight deviation of XðχÞ. A point calculated
in Lx ¼ 2371σ (N ¼ 1.125 × 106) also deviates from the
scaling function in Lx ¼ 158σ. We then concentrated on
the case χ ¼ 12.65 and varied Lx=σ from 158 to 2372, i.e.,
5.0 × 103 ≤ N ≤ 1.125 × 106. See the inset of Fig. 3.
Note that Xmin < X < Xmax, where Xmin is the position
of X when ΔT ¼ 0 for the respective value of mg, and
Xmax ¼ Lx − Xmin. We observe a gradual increase in X and
Xmax with Lx. The scaling function tends to converge to the
dotted line representing XðχÞ in the thermodynamic limit,
which will be derived below.
Thermodynamics—For the system of Lx ¼ 632σ with

χ ¼ 12.65 and kBΔT=ε ¼ 0.04, we first calculated ρðxÞ,
TðxÞ, and the Irving-Kirkwood stress tensor components
PxxðxÞ and PyyðxÞ in the steady state [25]. Each profile
is shown in [24], where the consistency in the normal
stress is shown as PxxðxÞ ¼ PyyðxÞ except for the vicinity

of the interface. We thus define the local pressure as
PðxÞ≡ PxxðxÞ. In Fig. 4, ρðxÞ and local pressure PðxÞ
are plotted simultaneously. We find that PðxÞ is almost
constant in the hot and cold gas layers.
To examine the local equilibrium properties at each x,

we numerically simulated the equilibrium system with
the NVT ensemble using the obtained local steady-state
values (TðxÞ; ρðxÞ). We set N ¼ 8.0 × 104 at g ¼ 0 with a

FIG. 3. Center of mass X=Lx versus χ ¼ kBΔT=mgLx. Param-
eter values of ðkBΔT;mg; LxÞ for calculating each point are
shown in [24]. The error bars are smaller than the symbols. The
points for Lx ¼ 2Ly ¼ 158σ (open symbols) show the collapse
ðg;ΔTÞ → ðαg; αΔTÞ with four different degrees of nonequili-
brium, kBΔT=ε ¼ 0.01, 0.02, 0.04, 0.06 at kBTm=ε ¼ 0.43.
System size dependence of the collapsed curve is examined with
632σ (filled square), 2371σ (cross), and the thermodynamic limit
with (9) (dotted line). Inset: system size effects in X=Lx and
Xmax=Lx at χ ¼ 12.65 with kBΔT=ε ¼ 0.04. Lx=σ ¼ 158, 316,
632, 1581, and 2371.

FIG. 4. Comparison of the local steady state and local equilib-
rium state with respect to pressure for χ¼12.65, kBΔT=ε¼0.04,
Lx ¼ 632σ, and N ¼ 8.0 × 104. The error bars are twice the
standard deviation. The width of each thermostatted region is 1.3%
of Lx. The density profile ρðxÞ indicates the positions of the two
interfaces. The local steady pressure PðxÞ is different from the
local equilibrium pressure Peq(TðxÞ; ρðxÞ) in the cold-gas layer.
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periodic boundary condition for x and y, and calculated
the virial pressure to determine the “equilibrium” pressure
Peq(TðxÞ; ρðxÞ). The details of the determination of
Peq(TðxÞ; ρðxÞ) are explained in [24]. Figure 4 provides
a simultaneous plot of PðxÞ and Peq(TðxÞ; ρðxÞ). We find
that PðxÞ ≃ Peq(TðxÞ; ρðxÞ) in the hot-gas layer occupying
the lower space, while PðxÞ ≠ Peq(TðxÞ; ρðxÞ) in the cold-
gas layer occupying the upper space. The difference
becomes larger with increasing distance from the interface
between the liquid and the cold gas. In the cold gas, the
equilibrium state for (TðxÞ; ρðxÞ) turns into the liquid-gas
coexistence. Thus, the cold gas is considered to be super-
cooled, which is not equilibrium but metastable.
Scaling function in the thermodynamic limit—In Fig. 4,

the two liquid-gas interfaces are in local equilibrium and
therefore the pressures are saturated there. The profiles
of PðxÞ and TðxÞ are piecewise linear. Based on these
observations, the local pressure PðxÞ in the liquid is
identified as the saturation pressure Ps(TðxÞ) for the local
temperature TðxÞ [24].
Letting the position of the interfaces be xint1 and xint2 with

xint1 < xint2 , the force balance is written as

Ps(Tðxint1 Þ) − Ps(Tðxint2 Þ) ¼ mgρLΔL ð7Þ
with the width of the liquid layer ΔL ≡ xint2 − xint1 and
the number density ρL of the liquid. Using dPs=dx ¼
ðdPs=dTÞðdT=dxÞ, we extract the leading order contribu-
tion to (7) in the limit ΔT=Tm → 0. We then obtain

j∇Tj
j∇TjL ¼ χ

kBρL
dPs

dT
ð8Þ

with the mean gradient j∇Tj ¼ ΔT=Lx and the gradient in
the liquid j∇TjL ¼ −½Tðxint2 Þ − Tðxint1 Þ�=ΔL, where we have
evaluated dPs=dT at T ¼ Tm [24].
Since TðxÞ is continuous and heat flux is uniform,

j∇Tj=j∇TjL is linear in X for Xmin ≤ X ≤ Xmax when
ρL ≫ ρG. Then, the relation (8) indicates that X is a linear
function of χ in χmin ≤ χ ≤ χmax [24], where

χmin =max ¼ kBρL
�
dPs

dT

�
−1
�
ΔL

Lx
þ κL

κG2=1

�
1 −

ΔL

Lx

��
: ð9Þ

κL, κG1 , and κG2 are heat conductivities of the liquid, the hot
gas, and the cold gas, respectively. To be χmin < χmax, κG2
must be larger than κG1 . Consistently, κ

G
2 =κ

G
1 is estimated

about 2.5 at the hovering state of χ ¼ 12.65 and ΔL ≃ Lx=2
for larger systems with Lx=σ ¼ 632 and 1581 [24]. Using
numerical estimates for ρL and dPs=dT, the values of χmin
and χmax are determined according to (9). The obtained
graph X ¼ XðχÞ is shown in Fig. 3 as the dotted line, in
which χmin ¼ 7.8 and χmax ¼ 16.
Last, we comment that the cold gas is thermodynami-

cally unstable even in the macroscopic limit. For the gas to

be stable, the condition PðxÞ ≤ Ps(TðxÞ) should be sat-
isfied. Combining the force balance PðxÞ − Ps(Tðxint2 Þ) ¼
−mgρGðx − xint2 Þ in the cold gas with the Fourier law, we
rewrite the stability condition as −κLj∇TjLðdPs=dTÞ ≤
mgρGκG2 . We then eliminate j∇TjL by substituting (8).
Finally, using the definition of χ in (6), we obtain the
stability condition for the cold gas as

ρLκL ≤ ρGκG2 : ð10Þ

This inequality is hardly reachable because ρG ≪ ρL, and
therefore, the cold gas is supercooled in general.
We here provide a physical explanation of how the

cold gas becomes metastable [24]. First, the pressure at
the interface is determined as the saturation pressure
Ps(Tðxint2 Þ), and the pressure above the interface is kept
almost constant owing to the low density of the gas.
Second, according to the Fourier law, a small heat con-
ductivity in gas results in a steep temperature gradient, and
thus the upper region of the gas becomes colder than near
the interface. The combination of these two facts leads to
the result that the gas situated sufficiently above the
interface can only be supercooled.
Summary and discussion—We numerically observed the

floating up of a liquid against gravity by imposing heat
flow. The liquid hovers steadily without separating into
pieces. The hovering state is characterized by the scaling
function of the dimensionless parameter χ. The cold gas
situated above the liquid remains metastable and super-
cooled. The phenomenon has been explained from the
thermodynamic argument based on the saturation property
at the two liquid-gas interfaces.
The most important achievement will be experimental

observation of these phenomena. The scaling function XðχÞ
allows us to predict the temperature difference required for
the floating up of the liquid against the gravity of the earth.
As an example, we consider the conditions under which
xenon floats up. The noble gas xenon shows liquid-gas
coexistence around 220 K, where the mass density ratio
between the liquid and gas is ρL=ρG ¼ 13. Applying XðχÞ
in Fig. 3, the xenon in the container with Lx ¼ 1 cm,
Ly ¼ Lz ¼ 0.25 cm is expected to float up even with a
small temperature difference of ΔT ¼ 0.2 K [24]. We thus
believe that experimental observations are feasible. Not
restricted to noble gases, familiar materials, such as nitro-
gens, carbon dioxide, and water can show the phenomenon,
too. A possible difficulty is choosing a material for the
container whose walls are repulsive to the fluid, such as the
superhydrophobic materials used in the cold Leidenfrost
examination for water [6]. The effect of boundary proper-
ties, including details of the thermostats, on the hovering
phenomenon should be investigated further. Related to
the experimental realization, a phenomenon that a slightly
heavier phase is located above a lighter phase has been
reported for liquid crystals in the heat conduction [26].
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At the end of this Letter, we briefly discuss convection in
macroscopic systems. The onset of thermal convection driven
by the buoyancy force would be characterized by a threshold
value of the Rayleigh number. Since the value of χ can be
chosen independently of the Rayleigh number, the liquid
hovering can occur in the absence of this type of convection.
One may consider another mechanism of convection driven
by the temperature dependence of the surface tension, called
Marangoni convection. We conjecture that this mechanism
does not work in liquid-gas interfaces, because the temper-
ature modulation along the interface leads to evaporation or
condensation processes, which inhibit the flow caused by the
surface tension. Furthermore, even if convection occurs at a
larger Rayleigh number than the threshold value, the hydro-
dynamic instability should be studied for the stationary
hovering state when χ ≥ χmin. That is, the phenomena
reported in this Letter provide a starting point for more
complex states.
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