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There has been a longstanding doubt that the conversion efficiency of high harmonics in solids is much
lower than expected at such a high level of electron density. To address this issue, we revisit the dynamical
process of high harmonic generation (HHG) in solids in terms of wavelet interference. We find that the
constructive interference among the wavelets has intrinsic consistency with the phase matching of coupled
waves in nonlinear optics, which we call Bloch-wave phase matching. Our analysis indicates that most of
the wavelets are out of phase and coherently canceled out during the solid HHG process, leading to only a
small fraction of excited electrons effectively contributing to HHG. Consequently, the conversion from the
excited electron to HHG is fairly low. Moreover, a Bloch-wave phase-matching scheme is proposed and a
nearly 3 orders of magnitude enhancement of solid HHG can be achieved by engineering the crystal
structures. Our Letter addresses a longstanding doubt and provides a novel idea and theoretical guidance for
realizing efficient all-solid-state tabletop ultraviolet light sources.
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High harmonic generation (HHG) is an extremely non-
linear optical process in which the radiated photon fre-
quency can reach many times that of the driving laser [1–4].
By synthesizing HHG signals in a wide spectral range,
ultrashort attosecond pulses can be obtained [5–10]. The
HHG has laid the foundation for attosecond science and a
series of attosecond techniques based on HHG has been
developed for studying the ultrafast dynamical processes in
atoms and molecules at the electron scale [11–18].
Currently, one of the critical problems limiting the

application of attosecond light sources is the difficulty of
achieving sufficient conversion efficiency. In recent years,
HHG has been extended to solid materials [19,20], which is
observed in a variety of material systems from traditional
wide band gap dielectrics to emerging novel materials [21–
26]. Unlike the sparse atoms or molecules in gases, the
atomic structure in solid systems is much denser (3–6
orders of magnitude higher than that in gases). Thus, a
much greater number of electrons can be excited in a unit
volume, which provides the possibility for efficient con-
version of HHG. Moreover, the laser intensity required to
generate HHG in solids (∼1 TW=cm2) is much lower than
that in gases (∼100 TW=cm2), which allows one to use a
driving laser with higher repetition rate and average power.
Besides, recent results have shown that the beam properties
of the generated high harmonics can be manipulated using
nanostructured surfaces, or metasurfaces [27–29]. Because

of these advantages, solid-state HHG is emerging as a
promising way to obtain compact high-efficiency extreme-
ultraviolet (XUV) light sources [19,20,30]. However,
present experimental results show that the conversion
efficiency of the solid HHG [21,31–33] is still at a similar
level compared to that in gases [34,35]. Some schemes have
been demonstrated to enhance the harmonic yield in solids
by resonant effects [36,37] or exciting more electrons [38].
Nevertheless, the very low conversion of solid-state HHG
at such a high level of electron density remains a long-
standing doubt, which limits the development of all-solid-
state tabletop XUV light sources.
In this Letter, we investigate the HHG emission in solids

from the Bloch-wave phase-matching perspective, where
the HHG process is dissected in terms of the interference of
Bloch wavelets in a parameter space. Our results show that
the relative phase of wavelets in a regular crystal varies over
a wide range, thus leading to the phase mismatch among
these wavelets. As a result, the effective number of
electrons contributing to HHG only accounts for a small
fraction of the excited electrons. This leads to a much lower
yield of harmonics in solids than that of gases already in the
microscopic response, which can address why the con-
version efficiency of HHG in solids is much lower than
expected. To enhance the HHG, we show a demo scheme
for optimizing the Bloch-wave phase matching by using a
structured crystal. Atomic-level structure engineering in
crystals significantly modulates electron motion so as the
relative phases among different wavelets, and nearly 3
orders of magnitude enhancement of HHG can be achieved
under optimal phase-matching conditions.
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We first show the derivation of the Bloch-wave phase-
matching perspective and how it works in a generalized
parameter space. Without loss of generality, we model the
solid HHG following the framework in Refs. [39,40]. The
harmonic yield can be rewritten as accumulation of Bloch
wavelets in parameter space (details are shown in Sec. A of
Supplemental Material [41]),

YðΩÞ ∝
����
X

kl;r0;tr
fðkl; r0; trÞGðkl; r0; tr;ΩÞe−iφðkl;r0;tr;ΩÞ

����
2

:

ð1Þ
In this form, fðkl; r0; trÞ is the weight of the Bloch wavelets
and Gðkl; r0; tr;ΩÞe−iφ½kl;r0;tr;Ω� is the contribution of a

single filtered wavelets in parameter space propagating
from fkl; r0; trg to fΩg. The indexes indicate which
electron fklgwhen ftrg and where fr0g emits the harmonic
fΩg. The propagation phase φ½kl; r0; tr;Ω� is gauge-
independent, which is determined by the quantum paths
of Bloch waves and the corresponding energy dispersion in
the parameter space. The summation over tr is the temporal
interference mentioned in [42,43]. In this Letter, we
only focus on the interference in coordinate and crystal-
momentum space, i.e., fr0g and fklg.
As in Eq. (1), the expression of HHG yield shows an

intrinsically consistent form with the propagation of
coupled waves in nonlinear optics [41,44], only with a
change of propagation path from spatial space to a
parameter space fkl; r0; tr;Ωg. This similarity allows us
to use similar physical pictures and method to understand
the solid HHG in analogy with the macroscopic phase
matching in nonlinear optics. Thus, we call the constructive
condition of harmonic emission as Bloch-wave phase
matching, which is essentially interference between
HHG contributed by different Bloch waves, and the
phase-matching condition gives Δφ½kl; r0; tr;Ω� ¼ 0.
To demonstrate the role of Bloch-wave phase matching

in solid HHG, we take a two-dimensional (2D) model
system with a square lattice structure as an example. For
comparison, we also consider a structured crystal, where
the interaction among atoms is limited by engineering the
crystal structures, and thus the electron motion and phase
matching can be modulated. We model these crystals using
a periodic effective potential,

Veffðx; yÞ ¼

8>><
>>:

Vhsin2f½ðxþ Nca0=2Þ�=½Nea0�πg; x∈ ½−L=2;−Nca0=2Þ
− V0

4
½1 − cosð2πx=a0Þ�½1 − cosð2πy=a0Þ�; x∈ ½−Nca0=2; Nca0=2�

Vhsin2f½ðx − Nca0=2Þ�=½Nea0�πg; x∈ ðNca0=2; L=2Þ;
ð2Þ

where L ¼ ðNc þ NeÞa0 with Nc and Ne is the number of
consecutive and etching atoms in a single cell along the x
axis. a0 is the lattice constant. Schematic diagrams (crystal
lattice) and intercepts of the effective potential in different
directions (red and purple lines) are shown in Fig. 1(a). For
a regular crystal (Nc ¼ 1 and Ne ¼ 0), we set a0 ¼ 6
atom units (a.u.) and V0 ¼ 0.4 a.u. to mimic the band gap
3.2 eV for a ZnO crystal. The influence of the etching
atoms is modeled by a barrier potential with Vh ¼ 1.2 a.u.
Note that our Letter focuses on some general physics
rather than specific materials. The model potential mimics
the general property of semiconductors with a given
band gap, which has been used for studying solid HHG
[45–47].
The interaction of the crystal with laser fields is

simulated by solving the time-dependent Schrödinger

equation with accelerated Bloch basis [39],

i∂tαn;kðtÞ ¼ En½kþAðtÞ�αn;kðtÞ þ FðtÞ ·
X
m

dnmαm;kðtÞ:

ð3Þ

FðtÞ ¼ −f½dAðtÞ�=½dt�g is the electric field. The energy
band EnðkÞ and the dipole momenta dnmðkÞ ¼
hun;kji∇kjum;ki are determined by the eigenequations with
the periodic effective potential Veffðx; yÞ, where jum;ki is
the periodic part of the Bloch function. The HHG
spectra are obtained by IðωÞ ¼ ω2jFFT½RBZhΨkðtÞjpþ
AðtÞjΨkðtÞidk�j2. A laser pulse linearly polarized along
the x axis is applied with a trapezoidal envelope containing
two optical-cycles rising, four optical-cycles flat, and a two
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FIG. 1. (a) Schematic diagrams of the structured crystal. Gray
areas indicate the etched regions. The red and purple lines show
the intercepts of the effective potential along the x and y axes,
respectively. (b) HHG spectra for a regular crystal and a
structured crystal. The blue and red boxes mark two areas with
different typical phenomena.
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optical-cycles falling edges. The wavelength and intensity
are set to be 2000 nm and 0.5 TW=cm2. In Fig. 1(b), we
plot the harmonic spectra for a regular crystal and a
structured crystal (Nc ¼ 14, and Ne ¼ 2). One can see
that the yield of low-energy harmonics (the 9–15th har-
monics marked by the blue box) in the structure crystal is
comparable to or even lower than those in the regular
crystal. In contrast, the yield of the high-energy harmonics
(the 17–25th harmonics marked by the red box) is

enhanced by about 3 orders of magnitude in the structured
crystals. Similar enhancement also can be obtained for
other laser wavelengths and intensities (see Sec. C in
Supplemental Material [41]).
We choose the 9th (low-energy region) and 19th har-

monics (high-energy region) as representatives to analyze
the phase-matching process. We first focus on the wavelets
with different crystal momenta,

JklðΩÞ ¼
Z

2π=L

0

Z
2π=L

0

Z þ∞

−∞
Wδkðkl; kxÞhΨkðtÞjpþAðtÞjΨkðtÞieiΩtdtdkydkx: ð4Þ

Here, we use a window Wδkðkl; kxÞ with δk ¼
½ð2π=LÞ=ð20Þ�. We also plot the 2D band structures and
wavelet distribution and found little influence of the Bloch-
wave phase matching along the ky direction. Thus, the
change of the yield is dominant by the structure along kx
direction and we focus on the discussion along the kx
direction.
To analyze the phase-matching process in crystal-

momentum space, we plot the individual k-wavelet
contribution CklðΩÞ ¼ jJklðΩÞj2 and the accumulated

harmonic yields YklðΩÞ ¼ j R kl
0

R 2π=L
0

Rþ∞
−∞ hΨkðtÞjpþ

AðtÞjΨkðtÞieiΩtdtdkydkxj2 in Figs. 2(c)–2(f). For a regular
crystal, one can see that the individual k-wavelet distribution
(dashed blue lines) shows a peak near kl ¼ 0.5½ð2πÞ=ða0Þ�
for the 9th harmonic and kl ¼ ð0.5� 0.34Þ½ð2πÞ=ða0Þ� for
the 19th harmonic. These distributions can be explained by
considering different preacceleration processes of the
excited electrons contributing to the low- and high-energy
region [48]. Moreover, as shown in Figs. 2(c) and 2(e), the
phase of the wavelet contributing to the 9th and 19th
harmonics (solid red lines) both continuously oscillate from
−0.5π to 0.5π. In this case, the harmonics contributed by the
wavelets with different crystal momenta are repeatedly
constructive and destructive interference. Thus, the accu-
mulated harmonic yields show a strong oscillation, and the
final harmonic yield is limited (solid blue lines).
Using the concept of Bloch-wave phase matching, one

can understand the difference between the microscopic
dynamics of HHG from gases and solids. In the gas
medium, the spacing between atoms (or molecules) is so
large that the coupling between them can be neglected. In
this case, all electrons are initially located at the same
ground state and the generated harmonics have the same
phase in the microscopic response. Thus, the contributions
from different atoms are constructively interfered with each
other if one ignores the macroscopic propagation effect (or
assuming that they are perfectly phase-matched), and then
the conversion efficiency of HHG is proportional to the
number of atoms. As a comparison, the coupling between

different atoms forms energy bands in solid systems, and
the contributions of different electron states are no longer
independent with each other. In this case, the electron
dynamics is described by the collective mode, e.g., Bloch
waves, and their interference results in the harmonic yield
as in Eq. (1). Different Bloch wavelets may experience
different quantum paths and accumulate phases in a wide
range [Figs. 2(c) and 2(e)]. Thus, the harmonic yields
among different Bloch wavelets are destructively interfered
with each other. This leads to a much lower yield of
harmonics in solids than that of gases already in the
microscopic response. This effect addresses the long-
standing doubt as to why solids do not exhibit high
conversion efficiency although the concentration of carriers
is much higher than atomic gases.

FIG. 2. (a), (b) The band structures of a regular crystal and a
structured crystal. The gray area marks the first Brillouin zone
(BZ) for the structured crystal. (c)–(f) The individual wavelet
contributions (dashed blue lines), and accumulated harmonic
yields (solid blue lines) for the 9th (low-energy region) and 19th
(high-energy region) harmonics in the first BZ. The red lines
show the phases of each wavelet. For each harmonic, the
maximum individual harmonic yield for a regular crystal is
normalized to 1, and other lines for harmonic yields are shown as
its relative value.

PHYSICAL REVIEW LETTERS 133, 116902 (2024)

116902-3



The above discussion indicates that one can realize the
Bloch-wave phase matching by modulating the quantum
paths or the energy dispersion along the paths. To show
this, we provide a demo scheme for optimizing the Bloch-
wave phase matching by using a structured crystal. As
shown in Figs. 2(e) and 2(f), for both the 9th and the 19th
harmonics, all the individual k wavelets have almost the
same phases and amplitudes. Thus, the wavelets are phase-
matched, and their contributions are constructive with each
other. This result can be understood by the modulation of
the electron bands as shown in Figs. 2(a) and 2(b). For a
regular crystal, the electron energy band has a continuously
bent structure. The electrons with different crystal momenta
will go through different quantum paths and the phases
accumulated from them have large differences. In contrast,
the energy bands of structured crystal are folded into a
narrow region and each band is divided into 14 sub-bands
with almost flat structure. The Bloch wavelets with differ-
ent k can move on and jump between these bands, and
different k wavelets accumulate phases nearly the same
considering the flat band structure. In this case, all the
wavelets are coherently constructive with each other and
the accumulated harmonic yield shows a parabolic growth
[see solid blue lines in Figs. 2(d) and 2(f)].
Besides the phase matching, the amplitude of the

individual k wavelet also influences the accumulated
harmonic yield. As shown in Fig. 2(d), the individual k-
wavelet contribution (dashed blue line) in the structured
crystal is much lower in the low-energy region (about
0.005) compared with the regular crystal. Therefore, the
total harmonic yield is still slightly smaller in the low-
energy region even though a good phase matching is
satisfied.

In contrast, the individual k-wavelet contribution [dashed
blue line in Fig. 2(f)] is much higher in the high-energy
region (about 32.6), and the total harmonic yield in the
structured crystal is enhanced by almost 3 orders of
magnitude.
The difference between the individual k-wavelet con-

tributions in the low-energy and high-energy regions shown
above can be understood by spatial interference. To show
this influence, we further analyze wavelets in the coor-
dinate space,

Jkxx0 ðΩÞ ¼
Z

2π=L

0

Z þ∞

−∞

Z
Cell

Wδxðx0; xÞfΨ�
kx;ky

ðr; tÞ½p̂þAðtÞ�Ψkx;kyðr; tÞgeiΩtdrdtdky; ð5Þ

using a spatial windowWδxðx0; xÞ with δx ¼ ðL=20Þ. Then,
one can obtain the coordinate-wavelet contribution
Ck0
x0 ¼ jJk0x0 j2, and the corresponding phase distribution.

We focus our discussions on the dominant electron states,
i.e., kx=Kmax ¼ 0.5 and 0.16 (Kmax ¼ 2π=a0 or 2π=L for a
regular or structured crystal) for the 9th and 19th harmon-
ics, respectively. As shown in Figs. 3(a)–3(d), the dashed
blue lines with shadow show the coordinate-wavelet con-
tributions and the solid red lines show the phase distribu-
tions. For the 9th harmonic, one can see that the coordinate-
wavelet contributions for a regular crystal show a two-peak
structure, and the phases change a little (less than 0.1π) near
the peaks. However, for a structured crystal, the amplitude
distribution of the wavelets spreads out and the maximum
amplitude decreases to about 0.3. Besides, the phases also
change from π to 0, i.e., the phase-matching condition is
not maintained in the coordinate space. These factors result

in a lower contribution of a structured crystal as shown in
Fig. 2(d). In contrast, for the 19th harmonic, the coordinate-
wavelet contributions of a structured crystal are localized to
the cell boundary, and the maximal amplitude is about 4.6
times higher than that of a regular crystal. Besides, the
phases show a step change among π, 0.1π, and −0.5π, and
some degree of constructive interference is still maintained.
As a comparison, the coordinate-wavelet contributions of a
regular crystal have four peaks but the neighboring two
peaks with nearly π phase shift and almost cancel out with
each other. Thus, a relatively higher amplitude is obtained
for a structured crystal as shown in Fig. 2(f).
One can understand the dynamic processes behind the

wavelet interference by analyzing the time-space distribution
of harmonic radiation, which can be obtained by Ykx

Ω ðx0; t0Þ ¼
Ω2jR ½ð2πÞ=L�

0

Rþ∞
−∞

R
CellWδx ðx0;xÞWδt ðt0; tÞfΨ�

kx;ky
ðr; tÞ½p̂þ

AðtÞ�Ψkx;kyðr; tÞgeiΩtdrdtdkyj2. This distribution indicates

FIG. 3. (a)–(d) The coordinate-wavelet contributions (blue lines
with shadow) for the 9th (low-energy region) and 19th (high-
energy region) harmonics. The red lines show the phases of each
wavelet. For each harmonic, the maximum individual harmonic
yield for a regular crystal is normalized to 1, and other lines for
harmonic yields are shown as its relative value. (e)–(f) The time-
space distribution of the 19th harmonic for a regular and a
structured crystal with the maximum amplitude being normalized
to 1 in both cases.
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when and where the high harmonics are radiated, intuitively
visualizing the dynamics behind the HHG process. We show
the dynamic distributions for the 19th harmonic of regular
and structured crystals in Figs. 3(e) and 3(f). For a regular
crystal, the harmonic radiations are dispersed throughout the
cell and exhibit an overall rise and fall with time evolution.
Such a collective behavior leads to a continuous phase
variation of different wavelets, which makes it difficult to
obtain a high harmonic conversion ratio. In contrast to this
collective behavior, the harmonic radiations in a structured
crystal are localized andmove from one side to another every
half-optical cycle. This more concentrated radiation behavior
leads to a more efficient energy release, which explains
phase matching among wavelets.
Building on the above results, we next demonstrate that

one can modulate the Bloch-wave phase matching by
changing the crystal structures. In Fig. 4, we plot the
ratio of HHG yield between a structured crystal and a
regular crystal with Nc changing from 6 to 18. The other
parameters are kept the same parameters as those in Fig. 1.
It is worth noting that the excitation of electrons for
different structures is at the same level (near 1‰) within
the parameters in our Letter, which excludes the effect of
higher excitation of electrons. One can see that the phase-
matched region can be modulated from lower to high
harmonics (black line to guide the eyes) by increasing Nc.
These results can be understood in terms of two aspects. On
the one hand, optimal phase matching and localized
enhancement can be achieved when the range of electron
oscillations matches the width of the region between the
etched atoms. Therefore, the optimal phase-matched har-
monic order becomes higher with increasing Nc. On the
other hand, asNc further increases (Nc > 14), the influence
of etched atoms becomes smaller and smaller, and the
behavior of electrons asymptotically tends to that of a
regular crystal, breaking the phase-matching conditions.

In summary, we derived the concept of Bloch-wave
phase matching in a generalized parameter space. By
analyzing the coordinate and crystal-momentum-space
interference, we found that the wavelet contributions in a
regular crystal are out of phase with each other, and only a
small fraction of the excited electrons effectively contribute
to the HHG. Our results address the longstanding doubt as
to why the conversion efficiency is much lower than
expected in solid HHG. Moreover, we propose a demo
scheme to optimize the Bloch-wave phase matching by
structure engineering, which can be realized by etching,
doping, or synthesis techniques in experiments. Nearly 3
orders of magnitude of enhancement have been demon-
strated in a structured crystal and the optimal phase-
matching region can be modulated by changing the crystal
structures. Looking forward, our scheme emphasizes the
importance of Bloch-wave phase matching that depends on
microscopic dynamics. It can be combined with other
techniques that enhance the HHG via modulating the light
propagation or electron injection [27–29,36–38]. This
suggests a novel idea for achieving high-efficiency HHG
and provides theoretical guidance for realized all-solid-
state tabletop XUV light sources. Beyond these, one can
expect to extend this perspective to other strong-field
phenomena, e.g., strong-field ionization. This provides a
new analytical method to intuitively resolve the electron
dynamics behind different physical processes in strong
fields.
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