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Topological modes (TMs) are typically localized at boundaries, interfaces and dislocations, and
exponentially decay into the bulk of a large enough lattice. Recently, the non-Hermitian skin effect has been
leveraged to delocalize the wave functions of TMs from the boundary and thus to increase the capacity of
TMs dramatically. Here, we explore the capability of nonlinearity in designing and configuring the wave
functions of TMs. With growing intensity, wave functions of these in-gap nonlinear TMs undergo an initial
deviation from exponential decay, gradually merge into arbitrarily designable plateaus, then encompass the
entire nonlinear domain, and eventually concentrate at the nonlinear boundary. Intriguingly, such extended
nonlinear TMs are still robust against defects and disorders, and stable in dynamics under external
excitation. Advancing the conceptual understanding of the nonlinear TMs, our results open new avenues
for increasing the capacity of TMs and developing compact and configurable topological devices.
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Introduction—The concept of topological matters flour-
ished rapidly in various fields such as condensed matters
[1], photonics [2–9], circuits [10–13], and acoustic and
mechanical systems [14–19]. As ensured by the conven-
tional bulk-boundary correspondence [20], topologically
nontrivial bulks give rise to topological modes (TMs)
localized at the boundary, interface, and crystallographic
defects such as dislocations and disclinations [21]. These
TMs are robust against disorders and backscattering
immunity to certain defects. Numerous novel phenomena
and potential applications rooted in TMs have been
elucidated in the past decades [22–29]. However, as
inherited from the bulk-boundary correspondence, TMs
exponentially decay into the bulk and hence have limited
capacity. The requirement of bulky topological materials
and the limited available capacity of TMs exhibit a
bottleneck in potential applications. Recently, the non-
Hermitian skin effect [30–32] and imaginary gauge field
[33,34] have been leveraged to delocalize TMs [17,35–37].
Therein, the nonreciprocal coupling tunes the TMs into
completely extended modes. Here, we explore the conse-
quence of nonlinearity in configurating TMs. Our Letter
demonstrates the capability of harnessing nonlinearity to
reshape TMs into arbitrarily designed profiles such as
square, isosceles triangular, and sinusoidal waves. In
addition, instead of a fixed mode profile for each sample
in previous works [17,35], the lattices covered by the
extended TMs herein can be easily tuned with the input
intensity.

Nonlinearity is ubiquitous [38–45], which, coupled with
topology, can lead to exciting physics and novel phenom-
ena [46–49]. The topological edge [46,47] and bulk
solitons [48,49] were discovered in nonlinear topological
insulators. They are strongly self-localized and propagate
unidirectionally along the edge or inside the bulk when the
nonlinear effects compensate for the dispersion. Thanks to
the inherent configurability of nonlinear structures, the
excitation intensity can induce topological phase transi-
tions, leading to the emergence of topologically robust edge
states [50–52] and corner states [53,54]. Recently, non-
linear effects have been extended to non-Hermitian topo-
logical insulators for active tuning of parity-time symmetry
and the corresponding topological edge states [55,56].
These nonlinear topologies span diverse systems of phys-
ics, ranging from quantum electronics and photonics to
classical systems such as acoustics and circuits. The
dependence of TMs on the excitation intensity paves the
way for configurable devices imbued with topological
features. However, previous works still focus on localized
modes, which have limited capacity. Consequently, any
related applications must be built upon a bulk lattice,
making them bulky in footprint and costly to fabricate.
It is natural to ask: Can nonlinearities be utilized to design
and configure TMs? Clearly, it would be of great interest to
pursue arbitrarily configurable nonlinear TMs which are
robust against disorders as protected by a nontrivial top-
ology while uniquely controllable through external sources
as inherited from the configurability of nonlinearity.
Exploring nonlinear topological physics continues to be
an intriguing frontier yet to be fully unveiled.
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Here, we leverage nonlinearity to deform, reshape, and
design the wave functions of TMs. Our system consists of a
one-dimensional lattice that is linear and topologically
nontrivial and a nonlinear one that features alternating
linear and nonlinear couplings [50–53]. In the low-intensity
regime (where the nonlinearity is negligible), the nonlinear
chain remains topologically trivial, supporting a topologi-
cal zero mode (TZM) localized at the interface. With
increasing intensity, the profile of the TZM is deformed
on the nonlinear lattice and deviates from the exponential
decaying behavior. As the intensity is above a certain
threshold, the TZM merges into an arbitrarily designable
plateau that gradually covers the entire nonlinear lattice
domain. Interestingly, the eigenfrequencies of TZMs stay at
the gap center of the nonlinear eigenfrequency spectrum.
Since the local nonlinearities drastically alter the periodic-
ity of Hamiltonians, the nonlinear topological properties
cannot be simply characterized based on the band topology
defined in linear systems. In addition, an arbitrarily con-
figurable TZM will certainly violate the traditional bulk-
boundary correspondence, as the nonlinear TZMs are no
longer orthogonal to the bulk modes (nor biorthogonal if
considering non-Hermitian systems). To properly charac-
terize the topological origin of the TZMs, we employ the
nonlinear spectral localizer [57–59], which makes use of
the system’s real-space description and yields local invar-
iants that are protected by local gaps. When excited, TZMs
are stable in dynamics against noise while tunable with the
excitation power. Our findings promote the understanding
of configurable TZMs and open new avenues for utilizing
the configurability in quantum and classical nonlinear
systems.
Shape shifting of TZMs with nonlinearity—Our system

consists of a nonlinear Su-Schrieffer-Heeger (NL-SSH)
chain [50] and a linear one [60] as sketched in Fig. 1(a).
The nonlinear Schrödinger equation in real space is

Hjψijψi ¼ ωjψi; ð1Þ

where ω is the eigenfrequency. jψi≡ ð� � � ; ai; bi; � � �ÞT is
the eigenstate with superscript T short for transpose, and ai,
bi representing the field amplitudes at different sublattices
of the ith unit cell. The tight-binding Hamiltonian Hjψi is

Hjψi ¼
X
i<n

ðνijaiihbij þ κi−1jaiihbi−1jÞ þ κdjanþ1ihbnj

þ
X
i>n

ðtjaiihbij þ τjaiþ1ihbijÞ þ H:c:; ð2Þ

The nonlinear chain has n unit cells, and νi and κi represent
the corresponding intracell and intercell couplings, respec-
tively. κi ¼ κ̃i þ αðjaiþ1j2 þ jbij2Þ with a linear term κ̃i and
a Kerr nonlinear coefficient α [50–54]. t and τ denote the
intracell and intercell coupling in the linear chain, respec-
tively. κd is the coupling at the interface. Given the specific

form of nonlinearity, the eigenvalues and eigenstates of the
nonlinear Schrödinger equation can be solved numerically
using a self-consistent method [54]. Figure 1(b) shows the
eigenvalue distribution versus the total wave function
intensity I ¼ hψ jψi ¼ P

iðjaij2 þ jbij2Þ. The red dots mark
the states with zero eigenfrequencies inside the gap. There
are another two modes (dark blue dots) that gradually
merge into the gap and approach the zero frequency. These
two modes originate from the bulk modes inside the
nonlinear lattice region, the evolution of the nonlinear part
of these wave functions is similar to the topological edge
states introduced through nonlinearity-induced topological
transitions [50,51] (See detailed discussion in the
Supplemental Material, Sec. 1 [61]).
When I is small (the nonlinear effects are negligible), the

NL-SSH remains topologically trivial ðνi > κ̃iÞ, and forms
an interface with the topologically nontrivial linear SSH
(τ > t). Therefore, there is a TZM localized at the interface
and exponentially decaying toward the chains on both
sides. With the increasing of I, the wave function of the
TZM deviates from exponential decay on the nonlinear

FIG. 1. (a) Schematic of a tight-binding lattice consisting of a
nonlinear (left) and linear (right) SSH chain. ai and bi are the
field amplitudes at different sites of the i − th unit cell (marked by
the dashed boxes). The red bonds denote nonlinear intercell
couplings fκi−1ðbi−1; aiÞg that depend on the intensities of sites
connected by the bonds. All the other couplings are linear with
the hoppings being fνig, κd, t and τ for the blue, black, cyan and
pink bonds, respectively. (b) Evolution of the nonlinear eigen-
frequency spectrum of a finite lattice as the intensity I is
increased. The red dots mark the TZM, whose eigenfrequency
is pinned at zero independent of I. (c) The wave functions of the
TZM for different I. At I1 ¼ 152, the wave function emerges a
plateau. The orange horizontal dashed line is for eye guiding.
This plateau will gradually extend to the entire nonlinear domain
at I2 ¼ 36.52 and eventually the field concentrates at the non-
linear boundary. (d) Based on Eq. (6), the shape of the plateau (at
the corresponding I2) can be turned into an arbitrary shape, such
as a square, isosceles triangle, cosine, etc. The parameters used
are t ¼ 2, τ ¼ κd ¼ 2.5, fνig ¼ 2.5, κi ¼ κ̃i þ αðjaij2 þ jbi−1j2Þ
with α ¼ 0.05. n ¼ 41 and the total number of lattice sites is 161.
In (b) and (c), κ̃i ¼ 1. In (d), the corresponding distribution of κ̃i
are provided in the Supplemental Material, Sec. 2 [61].
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lattice [see Fig. 1(c), at I ¼ 72, for example]. Subsequently,
the wave function exhibits a plateau at I ¼ I1 [the orange
solid line in Fig. 1(c), and the orange dashed line indicates
the plateau]. This plateau then gradually extends to cover
the whole nonlinear lattice domain when I > I1 [see
Fig. 1(c), the green line at I ¼ 252, for example], and
eventually fills the entire NL-SSH chain at I ¼ I2 [the blue
line in Fig. 1(c)]. When I is further increased to be above I2,
the wave function will concentrate at the left boundary of
the nonlinear lattice while the plateau built before is
preserved [see Fig. 1(c), the cyan line at I ¼ 402, for
example]. Interestingly, the plateau can be designed arbi-
trarily. Similar to Fig. 1(c), the wave function of the TZM
starts with an interface state and gradually extends to cover
the whole nonlinear lattice under the increasing of I.
Figure 1(d) shows three different profiles, square, isosceles
triangle, and cosine, of the TZMs at their corresponding
critical intensity I ¼ I2. Furthermore, the magnitude at the
linear part of the wavefunction of the TZM is tunable
with κd (Details provided in the Supplemental Material,
Sec. 2 [61]).
Topological protection of the TZMs—Generally, non-

linear effects are intrinsically local. When the nonlinear
effects are strong, the spatial periodicity of Hjψi will be
broken [see Fig. 2(a)], and the conventional topological
invariant defined in the momentum space becomes ill
defined. Recently, the notions of local topological markers
have been introduced to address situations where trans-
lation symmetry is absent, such as open boundaries,
disorder, and nonlinearity [57,58,77–79]. Here we adopt
a nonlinear spectral localizer [57,58] to characterize the
topological origin of the TZMs (see the Supplemental
Material, Sec. 3 [61]). The spectral localizer is a Hermitian
composite operator Lλ that combines Hjψi with the infor-
mation of the real-space position operators X using a
nontrivial Clifford representation,

Lλ≡ðx;ω̃ÞðX;HjψiÞ¼βðX−xIÞ⊗ΓxþðHjψi− ω̃Þ⊗Γy: ð3Þ

Here, Γx and Γy are a Pauli matrices, I is the identity
matrix, β is a hyperparameter to ensure that the units are
comparable, X ≡ xi where xi denotes the coordinate of the
ith lattice site. Based on the chiral symmetry, the spectral
localizer can be written in a reduced form as L̃λ≡ðx;ω̃Þ ¼
βðX − xIÞΠþH − iω̃Π with Π being the system’s chiral
operator. At a specified location x and frequency ω̃ [marked
as λ≡ ðx; ω̃Þ, which can be any value, even outside of the
system’s spatial and spectral regions], the local topological
invariant is given by

Cλ ¼
1

2
sigðLλÞ; ð4Þ

where sig is the signature of a matrix, i.e., its number of the
positive eigenvalues minus that of the negative ones. For

different I, Figs. 2(b)–2(d) show the eigenvalues of Lλ

[denoted as σðLλÞ] and the corresponding Cλ at ω̃ ¼ 0. It is
clear that both σðLλÞ and Cλ are intensity dependent. Cλ

changes when one of σðLλÞ crosses zero such as the red line
in the upper panel of Figs. 2(b)–2(d). When the red line
crosses zero at x0 [detðLλÞ ¼ 0], the system exhibits a state
approximately localized at λ ¼ ðx0; 0Þ, thus realizing the
bulk-boundary correspondence, i.e., the change of Cλ

corresponds to a TZM. The smallest singular value μλ ¼
min½jσðLλÞj� of the spectral localizer provides additional
information of the system at λ. Small values of μλ allow the
existence of a state approximately localized near λ, while
large ones indicate that the system does not support such a
state. Therefore, μλ can be thought of as a “local band gap,”
and the topological protection of the TZMs can be
characterized by

kΔHðδÞk ≤ μmax
λ ; ð5Þ

where kΔHðδÞk is the largest singular value of
ΔHðδÞ ¼ HjψiðδÞ −Hjψi, with HjψiðδÞ representing
the perturbed nonlinear Hamiltonian. Let μmax

λ ≡
maxx½μðx;0ÞðX;HjψiÞ� denotes the maximum μðx;0Þ inside
the topological domain (Cλ ≠ 0). As long as Eq. (5) is
satisfied, the topological protection guarantees the

FIG. 2. (a) The distribution of fκig of the TZMs for different I.
(b)–(d) Eigenvalues of the spectral localizer σðLλÞ and the
topological invariant Cλ versus the location x for different I,
where the solid red lines correspond to the smallest singular value
μλ, i.e., the eigenvalue closest to zero. When μλ ≈ 0, the system
supports a state near λ. Thus, the solid red lines can also be used to
approximately predict the width of the plateau. (e),(f) The
schematic of iterative trajectories of faig as the site number
increases (e) or decreases (f). The red lines are given by Eq. (6)
and the gray lines correspond to ai ¼ −aiþ1. The dark green and
cyan dashed lines indicate two iteration trajectories correspond-
ing to I < I2 and I > I2. In (b)–(d), β ¼ 0.2, and the lattice
constant and energy (frequency) unit are set as 1. Other
parameters are the same as those in Fig. 1(c).
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existence of a TZM with a similar wave function (see the
Supplemental Material, Sec. 4 [61]). Here, nonlinearity
does not create or annihilate TZMs, but it can change the
profiles of the TZMs.
The eigenstates of the TZM in the nonlinear part satisfy

νiai þ ðκ̃i þ αa2iþ1Þaiþ1 ¼ 0; ð6Þ

and all bi ¼ 0 due to the bipartite property. Figure 2(e)
sketches the iterative trajectories of faig for two different
paths as the site number increases. Regardless of whether
the starting point has a smaller amplitude (such as p1,
corresponding to I < I2) or a larger amplitude (such as p̃1,
corresponding to I > I2), it will eventually converge to
endpoints with a nonzero amplitude value, marked by the
blue dots. Here, the two blue points correspond to
the plateau in Fig. 1(c), and the corresponding height of
the platform is

jaij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðνi − fκ̃igÞ=α

p
: ð7Þ

The intensity I as well as the coefficients fνig, fκ̃ig and α
affect how fast the iteration converges and thus the width of
the plateau. Figure 2(f) shows the iterative trajectories of
faig along the direction of decreasing the site number.
Amplitudes starting at less than the plateau (such as p1,
corresponding to I < I2) converge to the endpoint with
vanishing amplitude, which corresponds to the decaying of
faig towards the left boundary of the NL-SSH chain. While
amplitudes starting at larger than the plateau (such as p̃1,
corresponding to I > I2) will diverge at the left boundary,
and the I ¼ 402 curve in Fig. 1(c) is one such case. The
waveform of TZM in the linear chain can be handled
similarly, and the magnitude is tunable with κd through
anνn þ anþ1κd ¼ 0 (see details in the Supplemental
Material, Sec. 2 [61]). Furthermore, when we vary κ̃i,
the shape of the plateau can be designed arbitrarily based
on Eq. (6) [see Fig. 1(d) and the Supplemental Material,
Sec. 5 [61] for a systematic approach.]
Stability of the TZMs under external excitation—

Compared with conventional linear topological structures,
nonlinear ones exhibit inherent configurability. In particu-
lar, the dynamics of TZMs depend on the intensity, which
offers a unique controllability utilizing external sources.
However, it still remains a fundamental challenge to reach
the designed TZMs in practical use. First, the nonlinear
TZM depends delicately on the local field distributions.
Second, the excited state in general is a composition of
different modes of the corresponding Green’s function, and
such a composition typically deviates from the TZM. Third,
one needs to exert additional effort to stabilize the excited
mode. Here as sketched in Fig. 3(a), we introduce external
sources (yellow spots) and losses (unavoidable in nature) at
different sites to obtain stable excited states that are almost
identical to TZMs. The dynamics in the time-domain

through external excitation can be captured by

∂

∂t
jϕi ¼ −iðHjϕi þH0Þjϕi þ AjSie−iω̃t; ð8Þ

where H0 ¼
Pð−ilajaiihaij − ilbjbiihbijÞ with la and lb

being the losses at different sites, jϕi is the state reached, ω̃
is the excitation frequency,jSi≡ ð0 � � � ; Si; � � �ÞT represents
the distribution of external sources. Here these excitation
sources are all located in the linear chain, and the number of
excitation sources can be reduced to one [see Fig. S7].
Given ω̃ and jSi, Fig. 3(b) shows the intensity jφj2 of the

FIG. 3. (a) Schematic of excitation. These yellow spots re-
present the locations of the sources, all of which are located in the
linear chain, and the number of excitation sources can be reduced
to one. The corresponding distribution is fA � Sig where A
denotes a global amplification factor. la and lb are the losses
at different sites, which is unavoidable in real systems and can be
used to stabilize the excited state. (b) The intensity jφj2 of the
excited state versus A, where A1 ¼ 0.4 and A2 ¼ 2.7. The dark
cyan circles obtained from Eq. (8) coincide with the solid red line
solved using the self-consistent Green’s function [Eq. (S8)].
(c) The wave functions at different A. (d) The excited wave-
function (light blue line) is almost perfectly consistent with the
results from Eq. (9) (gray dots, the approximate wave function)
and Eq. (6) (red circles, the wave function of targeted TZM).
(e) A typical distribution of noise. (f) Evolution of the similarity
function χ for different A. In the presence of noise, χ deviates
from 1 and will fall back to 1 eventually. Thus, we can obtain
stable excited states almost identical to TZMs. Here, ω̃ ¼ 0, la ¼
0.01 and lb ¼ 0.5, and the distribution of fSig is provided in
Fig. S6(b). Other parameters are the same as those in design 3 of
Fig. 1(d).

PHYSICAL REVIEW LETTERS 133, 116602 (2024)

116602-4



steady state reached at frequency ω̃ versus the amplification
factor of the sources A. With the increasing of A, Fig. 3(c)
shows the waveform of the corresponding excited state,
which also undergoes an initial deviation from exponential
decay (purple line), emerges an arbitrarily designable
plateau (orange and green lines), extends to the entire
nonlinear domain (blue line), and eventually diverges at the
nonlinear boundary (dark cyan line). When la=vi ≪ 1, the
corresponding waveform of the excited states in the non-
linear part can be approximated by

νiai þ ðκ̃i þ αa2iþ1Þaiþ1 þ α

�
la
vi
ai

�
2

aiþ1 þ lb
la
vi
ai ≈ 0;

ImðaiÞ ¼ 0; ð9Þ

and all ReðbiÞ ¼ 0. Since the last two terms are pretty
small, the excited states and the targeted TZMs are almost
identical [See Figs. 3(d) and S6]. A complementary
discussion on the waveform of the excited states in the
linear chain (not of interest here) is provided in the
Supplemental Material, Sec. 6 [61].
These configurable excited states provide the potential

for next-generation nonlinear topological devices. The
stability of these excited states against noise in dynamics
is critical when considering potential applications. We
investigate the stability of jφi by adding a sudden pertur-
bation jεi [80], and then simulating the following evolution
of wave function jϕi ¼ jφi þ jεi. Here jεi is a uniform
random noise with values inside the interval ð−3; 3Þ and the
one we used is plotted in Fig. 3(e). We implement a pretty
large noise amplitude here for demonstration purposes. The
effect of the disturbance can be captured by the following
similarity function

χðtÞ ¼ jhϕðtÞjφijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihϕðtÞjϕðtÞihφjφip : ð10Þ

In the presence of disturbance,χðtÞ deviates from 1.
Figure 3(f) shows the evolution of χ for different A in
the time domain. In a short time, χ in all cases returns to 1.
We have also checked different noise configurations,
and the results are the same (see Supplemental Material,
Sec. 7 [61]). Hence, the excited states are stable in dy-
namics, which thus exhibits potential for the applications of
configurable TZMs.
Conclusions—In summary, we propose arbitrarily con-

figurable TZMs by utilizing nonlinearity. Combining the
inherent configurability of nonlinearity and the robustness
originating from topology, the nonlinear TZMs are robust
against disorders, and can be uniquely controlled by
intensity. We show that with a proper excitation scheme,
the system can reach a stable steady state that is almost
identical to the target TZM. Our approach, free from the
constraints of chiral symmetry and zero-energy modes (see
Fig. S13), can be extended to higher-dimensional systems

and higher-order topological modes (see the Supplemental
Material, Sec. 8 [61]) and implemented within diverse
systems (see the Supplemental Material, Sec. 9 [61]), such
as circuits [51,54,80], photonic waveguides [49,81],
mechanical resonators [82], etc. [83,84]. Thus, we believe
our findings will enrich nonlinear topological physics and
provide new avenues for compact nonlinear topological
devices.
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