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Despite enormous efforts devoted to the study of the many-body localization (MBL) phenomenon, the
nature of the high-energy behavior of the Heisenberg spin chain in a strong random magnetic field is
lacking consensus. Here, we take a step back by exploring the weak interaction limit starting from the
Anderson localized (AL) insulator. Through shift-invert diagonalization, we find that, below a certain
disorder threshold h�, weak interactions necessarily lead to an ergodic instability, whereas at strong
disorder the AL insulator directly turns into MBL, in agreement with a simple interpretation of the
avalanche theory for restoration of ergodicity. We further map the phase diagram for the generic XXZ
model in the disorder h–interaction Δ plane. Taking advantage of the total magnetization conservation, our
results unveil the remarkable behavior of the spin-spin correlation functions: in the regime indicated as
MBL by standard observables, their exponential decay undergoes an inversion of orientation ξz > ξx. We
find that the longitudinal length ξz is a key quantity for capturing ergodic instabilities, as it increases with
system size near the thermal phase, in sharp contrast to its transverse counterpart.
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Introduction—Understanding the subtle interplay be-
tween disorder and interactions in quantum systems is a
major challenge in condensed matter physics. In particular,
the many-body localization (MBL) problem remains a
disputed issue, despite almost two decades of study [1–
13]. Key debates revolve around the (existence of an)
ergodicity-breaking transition at high energies, its possible
universality class, and associated finite-size behavior [14–
24], as well as the microscopic mechanisms driving the
restoration of ergodicity [25–31]. In this context, it is
instructive to recall the original concern of the field
[3,4,32]: what is the fate of the Anderson localized (AL)
insulator against weak interactions? Although this question
is well posed, most numerical work has focused instead on
the strongly interacting random-field Heisenberg chain
(RFHC) [6,14,23,33–41], with few exceptions [42–50].
Over the past decade, the RFHC has gone from the standard
model of MBL to an increasingly controversial topic,
primarily due to numerical finite-size effects [37,39–
41,52,53], and to the observation of very slow dynamics
[35,38,54–57] in a regime previously thought to be deeply
localized. This led to very different conclusions, such as the
absence of a genuine MBL phase [58–60], regardless of
mathematical arguments [9,61] in favor of its existence in a
related model, and clear signatures of nonthermal behavior
in various related experiments [62–69].
Main results—In this Letter, we consider the easy-plane
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which we will highly exploit. Figure 1 presents the high-
energy phase diagram of this model, building on midspec-
trum shift-invert diagonalization [14,70] of periodic chains
of sizes L∈ ½10;…; 21�. Before giving a detailed descrip-
tion, we sketch our main findings. (i) Along the non-
interacting line Δ ¼ 0, we argue, and numerically verify,

FIG. 1. Disorder-interaction phase diagram of the XXZ chain
Hamiltonian (1) at high energy (middle of the many-body
spectrum, ϵ ¼ 0.5 [14]) in the largest sector Sztot ¼ 0 (1=2 for
odd L). Symbols indicate the ergodic to MBL transition obtained
from standard observables (see main text) by extrapolation of the
crossings (Figs. 2 and 3, and Supplemental Material [71]). The
transition line starts from the Anderson insulator (Δ ¼ 0) at a
finite disorder strength h�. At stronger disorder, the heat map
shows the ratio of the transverse to longitudinal midchain
correlation lengths, fitted on even sizes L ¼ 10;…; 16, starting
with ξx=ξz ≈ 2 at Δ ¼ 0. The region where ξx=ξz ≲ 1 roughly
matches the instability regime in which ξzðLÞ increases with L
(Fig. 3 and main text).
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that there is a disorder threshold h� for the AL insulator
below which any finite interaction restores ergodicity,
while at strong disorder, AL turns into MBL. (ii) For finite
Δ, we provide an extrapolation (L → ∞) of the MBL
transition line using standard estimates (Fig. 1). (iii) Spin-
spin correlation functions (longitudinal zz and transverse
xx, with respect to the random field) and their associated
correlation lengths ξx;z present remarkably contrasted
behaviors on the MBL side: the dominant orientation
ξx > ξz (inherited from AL) changes to ξx < ξz across
the phase diagram (see color map in Fig. 1). At intermediate
disorder, this is accompanied by a growth of ξz with L,
while ξx barely changes. We interpret these observations as
a qualitative sign of increasing ergodic instabilities, based
on the behavior of these correlators in the ergodic phase.
(iv) For larger h, both AL and MBL show very short and
size-independent ξz;x ≪ 1, suggesting that an ergodic
instability is very unlikely.
Ergodic instability at weak interactions—The most

discussed theoretical framework describing the restoration
of ergodicity from the MBL phase is provided by the
avalanche theory (AT) [27,28]. In a nutshell, the AT starts
from strong disorder and considers a possible runaway
delocalizing instability triggered by rare ergodic seeds. This
is predicted to occur when the length scale ζ, controlling
the exponential decay of the effective coupling between
the ergodic bubble and the surrounding localized spins,
exceeds a certain Oð1Þ critical threshold ζavl [78]. A good
starting point for estimating ζ is the noninteracting AL
limit, since this length scale can be identified [79] to the
disorder-dependent many-body AL length [25,80] ξAL ¼
1= ln ½1þ ðh=h0Þ2� [81] controlling the exponentially local-
ized Anderson orbitals. A naive application of AT in the
vanishing interaction limit, where ζ ∼ ξAL, predicts the
existence of a finite disorder strength below which an
instability condition is met. Since the localization length
typically increases with the interaction strength [82–84], an
interaction-driven ergodic instability seems inevitable be-
low a certain threshold disorder strength h�. Conversely, at
higher disorder, the noninteracting localization length is
much smaller and the MBL phase is expected to be stable
for weak interactions if they do not enhance the localization
length beyond the avalanche criterion [28,79]. Below, we
compare these simple ideas with shift-invert results.
Phase diagram from standard observables—We first

verify the existence of an ergodic instability at weak
disorder for vanishing interaction Δ. Figure 2 displays
results for vertical scans at h ¼ 1, 2 (where ξAL ≈ 1.9, 0.7).
Figures 2(a) and 2(b) display two standard markers for the
transition: midchain entanglement entropy and a measure
of the spectral statistics based on the Kullback-Leibler (KL)
divergence between the gap ratio distribution and the
Poisson statistics KL½PðrÞjPoisson� (Supplemental Material
[71]). Figures 2(c) and 2(d) demonstrate a clear drift of
the crossing positions for even and odd sizes with increas-
ing L, thus showing that ΔcðLÞ → 0 for h ¼ 1 and h ¼ 2.

For stronger disorder, the system is in a finite-size crossover
regime, yielding very large errors and a strong drift for
ΔcðLÞ at h ¼ 3, making the extrapolation difficult [71] (see
Fig. 1). Although this makes it challenging to extract a
precise numerical value for the noninteracting threshold h�,
our data clearly point to a finite and not too small
value 2 ≤ h� ≤ 3, corresponding to a short AL length
0.7 ≥ ξ�AL ≥ 0.5.
In Fig. 1, we report this ergodic instability using

two further measures: the eigenstate ergodicity in the
Hilbert space quantified by the participation entropy (PE)
[14,33,36,85], and the extreme local magnetizations (EM)
[23,51,80]. These results bring insight to the observations
in Ref. [86] and into the results of Ref. [46], where the
reported onset of quantum chaos is naturally explained by
the study being performed at low disorder (h ≈ 0.57, ξ ≈ 5).
A similar scenario occurs in the disordered interacting
Majorana chain, where an immediate ergodic instability
arises when the noninteracting localization length exceeds a
threshold [48].
Moving away from AL, we investigate the extent of the

ergodic regime at finite interaction, building on the same

FIG. 2. Critical interaction strength Δc above which ergodicity
occurs at constant fields (h ¼ 1, 2), obtained from midchain
entanglement entropy (EE) and gap ratio (GR) statistics. At finite
sizes, upon decreasing Δ, (a) EE changes from a volume law at
large interaction to an area law at small interaction, and (b) the
Kullback-Leibler divergence between the gap ratio distribution
and the Poisson statistics goes from ≈0.1895 to ≈0 [71]. (c),(d)
Drifts of Δc for EE and GR crossings of even (crosses, solid fits)
and odd (circle, dashed fits) sizes. Lavg indicates the mean of two
sizes. The best fits yield a quadratic dependence with 1=Lavg.
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four observables. Figures 3(a) and 3(b) report the PE
behavior for various sizes as a function of the disorder h
for fixed Δ ¼ 0.5 and Δ ¼ 1 (RFHC). In agreement with
previous observations, small system sizes underestimate
the ergodic regime, leading to systematic finite-size drifts
for the ergodic-to-MBL crossovers toward larger disorder
strengths (Supplemental Material [71]), clearly shown in
the top insets of Fig. 3. Using linear fits with 1=L as in the
RFHC case [37], we find that these drifts consistently
converge to finite values hc, indicating a broad but finite
extent of the ergodic regime shown by the various symbols
in Fig. 1. Note that the spectral statistics systematically
yield the largest critical extrapolated disorder strengths
hGRc . For Δ ¼ 1, our estimate hGRc ¼ 5.6ð5Þ is consistent
with the numerical landmark hmg ≈ 5.7 proposed by
Morningstar et al. [41], where the smallest gap starts to
deviate from Poisson expectations.
New insights from spin correlations—Aiming to provide

a real-space view of how ergodicity is reached from the
strong disorder regime, we now focus on pairwise spin
correlations for midspectrum eigenstates ofHΔ. Introduced
early on as possible indicators of the MBL transition for the
RFHC [6], correlations have, however, been the subject of
surprisingly little work for U(1) symmetric models [6,87–
91], leading nonetheless to the observation of their

nontrivial distributions in both ergodic and MBL regimes
[88] and suggesting they may signal an intermediate critical
phase driven by rare events [87].
We show that spin correlations provide remarkable

insights, for several reasons. First, exponentially decaying
correlators allow one to connect to the noninteracting
Anderson limit, where the localization and spin correlation
lengths are all proportional (for h≳ 2). Moreover, correla-
tion lengths remainwell defined in theMBL regime at strong
disorder. Finally, correlations at the largest possible distance
in periodic chains can probe early onsets of thermalization
processes through system-wide resonances.We focus on the
midchain connected correlation functions [92]

Cαα
L=2 ¼

��hSαi SαiþL=2i − hSαi ihSαiþL=2i
��: ð2Þ

Figures 3(e) and 3(f) illustrate the two limiting cases for the
characteristic decay with L of the typical average of the
longitudinal (α ¼ z) and transverse (α ¼ x) components. In
the ergodic phase, where the eigenstate thermalization
hypothesis (ETH) applies [93–95], eigenstates are well
described by featureless random states, yielding an absence
of spatial variation for both components. However, we
expect strongly contrasted dependences on L: while ETH
implies an exponential vanishing with the system size for

FIG. 3. Overview of the ergodic, MBL, and instabilities regimes. The gray area indicates the critical disorder extrapolated from
standard observables (insets). (a),(b) AtΔ ¼ 0.5 andΔ ¼ 1, the PE scaling with the logarithm of the Hilbert space dimensionD1 lnN þ
b1 shows a crossing point, corresponding to a change of sign for the subleading correction b1. (c)–(g) Midchain correlations, Eq. (2), and
corresponding correlation lengths, Eq. (3). (c),(d) Correlation lengths atΔ ¼ 0.5 andΔ ¼ 1 compared to the AL case, extracted from fits
on even sizes. (e),(f) Associated characteristic correlations decay: (e) ergodic regime at h ¼ 1, Δ ¼ 1, compared to an Sz ¼ 0 random
vector (dashed lines); (f) MBL regime at h ¼ 6, Δ ¼ 0.02 and regime showing instabilities at h ¼ 6, Δ ¼ 1, compared to the AL
correlations for the same disorder strength. (g) At h ¼ 6, the longitudinal correlation length shows a square-root-like dependence on Δ.
In all cases, the AL values come from fits on L ¼ 14;…; 20.
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Cxx
L=2 ∼N −1=2 (with N ≈ 2L the size of the Hilbert space),

the total magnetization conservation (Sztot ¼ constant) leads
to amuch slower algebraic decay of the longitudinal compo-
nent Czz

L=2 ∼ ð4LÞ−1. In Fig. 3(e), exact diagonalization
results deep in the ergodic regime indeed show different
behaviors, approaching the exact calculation performed
with Sztot ¼ 0 random states.
Conversely, although the magnetization conservation

still holds, the strong disorder regime shows exponential
decays for both x and z components, as shown for h ¼ 6
and weak enough interaction in Figs. 3(f) and 3(g). It is
therefore natural to define the typical midchain correlations
lengths ξx and ξz as follows:

lnCαα
L=2 ≕ −

L
2ξα

þOð1Þ; ð3Þ

where ð…Þ stands for disorder averaging. We first make a
few key observations for the large-h, presumably localized
regime.
(i) In the noninteracting AL limit (Δ ¼ 0) the z compo-

nent of the spins is pinned by strong random fields, yielding
short correlation lengths and dominant quantum fluctua-
tions in the transverse channel. As a result, we observe at
h ¼ 6, ξALx ¼ 0.80ð2Þ > ξALz ¼ 0.41ð1Þ. This factor of 2
appears to be robust along almost the entire AL line, at least
for h > 2 (see Fig. 1), providing a hallmark for this regime.
(ii) Remarkably, even a very weak interaction above the

AL line leads to a strong qualitative change for the
longitudinal correlations with a sharp increase of ξz, while
the transverse part remains essentially unaffected, as clearly
visible in Figs. 3(f) and 3(g). In particular, we observe in
Fig. 3(g) a very rapid, square-root-like increase of ξz with
Δ, while ξx approximately keeps its noninteracting value.
(iii) For larger interactions, the trend intensifies so that ξz

crosses ξx around Δ ∼ 0.5 and eventually becomes larger as
illustrated by the Heisenberg point at Δ ¼ 1, h ¼ 6.
Interaction-driven instabilities—This striking reversal in

the orientation of the dominant correlations, already visible
at small size in the color plot provided over the entire phase
diagram, is even more apparent with larger L in Figs. 3(c)
and 3(d) where one observes crossing between ξx and ξz for
two representative horizontal cuts (Δ ¼ 0.5, 1). In addition,
both plots show that the transverse correlation length ξx has
a very weak size dependence and remains finite and small
everywhere. The only significant interaction effect appears
in the ergodic regime below h ≈ 2.5, where ξx deviates from
the divergence of ξALx and decays to its ETH value 1= ln 2.
Quite differently, Figs. 3(c), 3(d), and 3(g) show that the
longitudinal correlation length ξz is much more sensitive
and displays very pronounced variations both with Δ (in all
regimes) and with L (in the ergodic phase). The latter is
easily understood from the distinction between the alge-
braic and exponential decay of the typical Czz

L=2 vs C
xx
L=2 in

the ergodic regime, where effectively ξx=ξz → 0 as L
increases.

In the opposite case of strong disorder and weak
interaction, the situation is qualitatively very close to
AL, with ξx > ξz. This suggests that MBL and AL are
connected in this part of the phase diagram [80,96], where,
furthermore, no finite-size effects are observed for either ξz
or ξx. However, as the disorder is gradually reduced, though
still well before the presumed ergodic transition, an
instability is observed via a systematic growth with L of
our numerical estimates of ξz. This is clearly visible in
Fig. 3 where one sees such instabilities, for example, as
soon as h < 7 for Δ ¼ 0.5 [Fig. 3(c)] or above Δ ≈ 0.1 for
h ¼ 6 [Fig. 3(g)], both cases corresponding to a regime
where all other standard finite-size observables show well-
converged MBL-like behavior. This striking finding is a
stronger signal than the observed ξx ¼ ξz crossing, even
though it occurs in roughly the same regime. Indeed, such a
crossing simply reflects the fact that ξz increases faster than
ξx, but the additional growth of ξz with L is a remarkable
indication of an anomalous response of the diagonal
correlations in a regime of disorder where one would have
rather expected MBL physics. Based on the very different
scaling with L of Czz

L=2 in the two opposite regimes, we may
therefore interpret these observations as a qualitative
marker of emerging ergodic instabilities in models con-
serving the total magnetization.
Summary and discussion—In this Letter, we first pro-

vided evidence for the direct instability of the Anderson
insulator toward ergodic behavior in the small interaction,
weak disorder limit h < h� ∼ 2–3. This prediction is
directly testable experimentally in platforms with control-
lable interactions, such as with Feshbach resonances in cold
atoms [62,97]. In a second part, we took advantage of the
magnetization or particle number conservation (often met
in experiments) to unveil a finite-size growing instability of
ξzðLÞ, in a part of the phase diagram where other finite-size
indicators point to an MBL regime. Our main results,
summarized in Figs. 1 and 3, will be further detailed and
expanded in a forthcoming paper [98]. The system-wide
response probed by Czz

L=2 and its two-body nature can be
linked to the end-to-end mutual information [99], which
was recently used as a landmark to detect system-wide
resonances [41]. Two remarks are in order though: by
averaging over eigenstates and disorder realizations,
lnCzz

L=2 reflects the typical behavior, whereas Ref. [41]
studied the extreme statistics of the maximal (over all
eigenstates) mutual information. Second, the connected
correlator Czz is routinely accessible as a density-density
correlation in most MBL experimental platforms, see, e.g.,
Ref. [66], which indeed observe an increase of ξz as
disorder is decreased in the MBL regime, albeit in a
different setup than ours (correlations after a quench in
a quasiperiodic potential vs correlators in eigenstates in a
random potential).
Could ξz growing with L be further considered a

smoking gun of avalanches? Our eigenstates analysis does
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not allow us to conclude on this, but we remark that ergodic
inclusions (potential seeds for avalanches) naturally favor
an enhancement of diagonal correlations. Indeed, typical zz
correlations barely decay across ergodic regions, yielding
an effective growth of ξz, which may be a key quantity to
further investigate avalanche instabilities in realistic micro-
scopic models (for a recent study of dynamical correlations
in this context, see Ref. [100]). Nevertheless, one of the
most difficult remaining questions concerns the status of
the intermediate region showing finite-size instabilities.
Will the growth of ξzðLÞ continue on larger length scales,
giving rise to an ergodic regime or a novel intervening
glassy state [49], or will it instead saturate, corresponding
to an MBL phase? We hope that our Letter will motivate
further explorations in particle number-conserving theo-
retical models or in experimental platforms susceptible to
host an MBL transition.
The following sparse linear algebra libraries were used in

this Letter: PETSc [101,102], SLEPc [103,104], MUMPS
[105,106], and Strumpack [107].
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