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The Luttinger model is a paradigm for the breakdown due to interactions of the Fermi liquid description
of one-dimensional massless Dirac fermions. Attempts to discretize the model on a one-dimensional lattice
have failed to reproduce the established bosonization results because of the fermion-doubling obstruction: a
local and symmetry-preserving discretization of the Hamiltonian introduces a spurious second species of
low-energy excitations, while a nonlocal discretization opens a single-particle gap at the Dirac point. Here,
we show how to work around this obstruction by discretizing both space and time to obtain a local
Lagrangian for a helical Luttinger liquid with Hubbard interaction. The approach enables quantum
Monte Carlo simulations that preserve the topological protection of an unpaired Dirac cone.
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Introduction—A quantum spin Hall insulator [1] sup-
ports a one-dimensional (1D) helical edge mode of counter-
propagating massless electrons (Dirac fermions, see Fig. 1),
with a linear dispersion E ¼ �ℏvFk. The crossing at
momentum k ¼ 0 (the Dirac point) is protected from
gap opening [2] provided that there is only a single species
of low-energy excitations and provided that fundamental
symmetries (time-reversal symmetry, chiral symmetry) are
preserved. This topological protection is broken on a lattice
by fermion doubling [3]: any local and symmetry-
preserving discretization of the momentum operator
k ¼ −iℏd=dx must introduce a spurious second Dirac
point [4,5].
Fermion doubling is problematic if one wishes to study

interaction effects of 1D massless electrons (a Luttinger
liquid [6–9]) by means of a lattice fermion method such as
quantumMonte Carlo [10–14]. Away to preserve the time-
reversal and chiral symmetries on a lattice is to increase the
dimensionality of the system [15,16]. One can simulate a
2D system in a ribbon geometry so that the two fermion
species are spatially separated on opposite edges [17–21].
The 2D simulation is computationally more expensive than
a fully 1D simulation, but more fundamentally, the pres-
ence of states in the bulk may obscure the intrinsically 1D
physics of a Luttinger liquid [22]. A 1D simulation using a
nonlocal spatial discretization [23] that avoids fermion
doubling was studied recently [24] without success: the
nonlocality gaps the Dirac point [24,25].
Here, we show that avoiding fermion doubling can be

done: a 1D helical Luttinger liquid can be simulated on a
lattice if both space and time are discretized in a way that
preserves the locality of the Lagrangian. The time discre-
tization (in units of τ) pushes the second Dirac point up to
energies of order ℏ=τ, where it does not affect the low-
energy physics, as we demonstrate by comparing quantum

Monte Carlo simulations with results from bosonization
[7–9,26].
The lattice fermion approach that we will now describe

refers specifically to the massless Dirac fermions that
appear in topological insulators. Other approaches exist
that exploit the boson-fermion correspondence. One can
first bosonize the fermion formulation of the problem [27]
and then put it on a lattice [28]. Luttinger liquid physics
may also govern the low-energy properties of bosonic
systems such as spin chains [29], where fermion doubling
does not apply and a lattice formulation poses no diffi-
culties [30,31].
Locally discretized Lagrangian—We construct the

space-time lattice using the tangent fermion discretization
approach [32–37]. We first outline that approach for the
noninteracting case in a Lagrangian formulation that is a
suitable starting point for the interacting problem.
Consider a 1D free massless fermion field ψσðx; tÞ with

Lagrangian density given by

Lcontinuum ¼
X
σ

ψ†
σði∂t þ iσvF∂xÞψσ: ð1Þ

The spin degree of freedom σ, equal to ↑↓ or �1,
distinguishes right-movers from left-movers, both propa-
gating with velocity vF along the x axis. We set ℏ ¼ 1 and

FIG. 1. Helical edge mode consisting of counterpropagating
spin-up and spin-down electrons on the 1D boundary of a 2D
quantum spin Hall insulator.
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denote partial derivatives by ∂x; ∂t. The chemical potential
is set to zero (the Dirac point, corresponding to a half-
filled band).
We discretize space x and time t in units of a and τ,

respectively. The naive discretization of space replaces
∂x ↦ ð2aÞ−1ðea∂x − e−a∂xÞ, which amounts to ∂xfðxÞ↦
ð2aÞ−1½fðxþaÞ−fðx−aÞ�. Similarly, ∂t↦ð2τÞ−1ðeτ∂t−e−τ∂tÞ,
producing a Lagrangian with a sine kernel,

Lsine ¼ ðaτÞ−1
X
σ

ψ†
σðsin ω̂τ − σγ sin k̂aÞψσ: ð2Þ

We defined the frequency and momentum operators ω̂ ¼
i∂t and k̂ ¼ −i∂x and denote γ ¼ vFτ=a. The discretized
ψ’s are dimensionless.
The naive discretization is a local discretization in the sense

that the Lagrangian only couples nearby sites on the space-
time lattice. However, it suffers from fermion doubling: the
dispersion relation sinωτ ¼ σγ sin ka has branches of right-
movers and left-movers that intersect at a Dirac point (see
Fig. 2, left panel). Kramers' degeneracy protects the crossings
at time-reversal invariant points ωτ; ka ¼ 0modulo π. In the
Brillouin zone jkaj; jωτj < π there are four inequivalent
Dirac points, two of which are at ω ¼ 0: one at k ¼ 0, the
other at jkj ¼ π. Low-energy scattering processes can couple
these two Dirac points and open a gap without violating
Kramers’ degeneracy. To avoid this we need to ensure that
there is only a single Dirac point at ω ¼ 0.
One way to remove the spurious second species of low-

energy excitations goes by the name of SLAC fermions in
the particle physics context [23], or Floquet fermions in the
context of periodically driven atomic lattices [38,39]. In
that approach one truncates the continuum linear dispersion
at the Brillouin zone boundaries, and then repeats saw-
tooth-wise [40] with 2π-periodicity,

Lsawtooth ¼ −iðaτÞ−1
X
σ

ψ†
σðln eiω̂τ − σγ ln eik̂aÞψσ: ð3Þ

The sawtooth dispersion relation ln eiωτ ¼ σγ ln eika is
strictly linear in the Brillouin zone, with a single Dirac
point at ω ¼ 0; however the Lagrangian is nonlocal,

ðln eik̂aÞfðxÞ ¼
X∞
n¼1

ð−1Þnn−1½fðx − naÞ − fðxþ naÞ�; ð4Þ

so distant points on the space-time lattice are coupled.
To obtain a local Lagrangian with a single Dirac point at

ω ¼ 0 we take two steps. First we replace the sine in Lsine
by a tangent with the same 2π periodicity,

Ltangent ¼
2

aτ

X
σ

ψ†
σ½tanðω̂τ=2Þ − σγ tanðk̂a=2Þ�ψσ: ð5Þ

The resulting tangent dispersion tanðωτ=2Þ ¼ σγ tanðka=2Þ
removes the spurious Dirac point (see Fig. 2, right panel),
but it creates a nonlocal coupling. The locality is restored
by the substitution

ψσ ¼ D̂ϕσ; D̂ ¼ 1

4
ð1þ eik̂aÞð1þ eiω̂τÞ; ð6Þ

which produces the Lagrangian

Ltangent ¼
1

2
ðaτÞ−1

X
σ

ϕ†
σ½ð1þ cos k̂aÞ sin ω̂τ

− σγð1þ cos ω̂τÞ sin k̂a�ϕσ: ð7Þ

Product terms cos k̂a × sin ω̂τ and cos ω̂τ × sin k̂a couple
ϕσðx; tÞ to ϕσðx� a; t� τÞ, so the coupling is off-diagonal
on the space-time lattice but local.
This recovery of a local Lagrangian from a nonlocal

Hamiltonian can be understood intuitively [37]: while the
tangent discretization of the differential operator is non-
local, its functional inverse, which is the trapezoidal
integration rule, is local, allowing for a local path integral
formulation of the quantum dynamics.
The next step is to introduce the on-site Hubbard

interaction (strength U, repulsive for U > 0, attractive
for U < 0) by adding to Ltangent the term

LHubbard¼−ðU=aÞn↑ðx;tÞn↓ðx;tÞ; nσ ¼ ∶ψ†
σψσ∶: ð8Þ

The density nσ is normal ordered (Fermi sea expectation
value is subtracted). Substitution of Eq. (6) expresses the
density nσ at point ðx; tÞ in terms of the average of the field
ϕσ over the four corners of the adjacent space-time unit cell.
This completes the lattice formulation of the Luttinger

liquid. We characterize it by the functions

CσðxÞ¼hψ†
σðx;0Þψσð0;0Þi; ψ¼ðψ↑;ψ↓Þ;

RxðxÞ¼hρxðxÞρxð0Þi; ρxðxÞ¼
1

2
ψ†ðx;0Þσxψðx;0Þ: ð9Þ

FIG. 2. Dispersion relation of a massless fermion on a 1þ 1-
dimensional space-time lattice. The two panels compare the sine
and tangent discretization schemes for γ ¼ vFτ=a equal to 1
(dashed curves) or 0.9 (solid curves). The sawtooth discretization
has the γ-independent dispersion ω ¼ �vFτ in the Brillouin zone
jωτj; jkaj < π. Only the tangent discretization gives a local
Lagrangian with a single Dirac point at ω ¼ 0.
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Here, h� � �i ¼ Z−1Tre−βH � � � indicates the thermal average
at inverse temperature β ¼ 1=kBT (with Z ¼ Tre−βH the
partition function). We first focus on the propagator Cσ.
Discretized Euclidean action—The propagator can be

rewritten as a fermionic path integral [41,42] over anti-
commuting fields Ψ ¼ fΨþ;Ψ−g and Ψ̄ ¼ fΨ̄þ; Ψ̄−g,

CσðxÞ ¼ Z−1
Z

DΨ̄
Z

DΨe−S½Ψ;Ψ̄�Ψ̄σðx; 0ÞΨσð0; 0Þ; ð10Þ

with S the Euclidean action. For free fermions one has

S ¼
Z

β

0

dt
Z

L

0

dx
X
σ

Ψ̄σðx; tÞð∂t − iσvF∂xÞΨσðx; tÞ: ð11Þ

The Lagrangian (1) is integrated along the interval 0 <
it < iβ on the imaginary time axis with antiperiodic
boundary conditions, Ψσðx; βÞ ¼ −Ψσðx; 0Þ. On the real
space axis the integral runs from 0 to L with periodic
boundary conditions, Ψσð0; tÞ ¼ ΨσðL; tÞ.
The tangent fermion discretization replaces i∂t ↦

ð2=τÞ tanðω̂τ=2Þ and i∂x ↦ −ð2=aÞ tanðk̂a=2Þ, resulting
in the discretized Euclidean action

Stangent ¼ 2
X
x;t;σ

Ψ̄σðx; tÞ
�
−i tanðω̂τ=2Þ

þ γσ tanðk̂a=2Þ�Ψσðx; tÞ ð12aÞ

¼ 1

2

X
x;t;σ

Φ̄σðx; tÞ
�
−ið1þ cos k̂aÞ sin ω̂τ

þ γσð1þ cos ω̂τÞ sin k̂a�Φσðx; tÞ: ð12bÞ

In the second equality we substituted the locally coupled
fields, Ψ ¼ D̂Φ, Ψ̄ ¼ Φ̄D̂†, cf. Eq. (6). The Hubbard
interaction is then included by adding to Stangent the action

SHubbard ¼ Uτ
X
x;t

Ψ̄þðx; tÞΨþðx; tÞΨ̄−ðx; tÞΨ−ðx; tÞ: ð13Þ

We choose discretization units τ, a so that both β=τ and
L=a are integer. The space-time lattice consists of the
points itn ¼ inτ, n ¼ 0; 1; 2…β=τ − 1 on the imaginary
time axis and xn ¼ na, n ¼ 0; 1; 2…L=a − 1 on the real
space axis. Upon Fourier transformation the sum over tn
becomes a sum over the Matsubara frequencies
ωn ¼ ð2nþ 1Þπ=β, while the sum over xn becomes a
sum over the momenta kn ¼ 2nπ=L. These are odd versus
even multiples of the discretization unit to ensure the
antiperiodic versus periodic boundary conditions in t and
x, respectively. In order to avoid the pole in the tangent
dispersion we choose β=τ even and L=a odd.
Free-fermion propagator—Without the interaction term

the propagator (10) is given by a Gaussian path integral
[41,42], which evaluates to

CσðxÞ ¼
τ

βL

X
k;ω

e−ikx

2i tanðωτ=2Þ − 2γσ tanðka=2Þ : ð14Þ

A simple closed-form answer follows for the Fourier
transform CσðkÞ in the zero-temperature (β → ∞) limit,

CσðkÞ ¼ τ

Z
π=τ

−π=τ

dω
2π

1

2i tanðωτ=2Þ − 2γσ tanðka=2Þ
¼ −1

2signðσ tanðka=2ÞÞ þ 2γσ tanðka=2Þ : ð15Þ

For the sine dispersion we have instead

CσðkÞ ¼
−signðσ sin kaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4γ2sin2ka

p ; ð16Þ

while the sawtooth dispersion gives

CσðkÞ ¼ −
1

π
arctan

�
π

γσka

�
; jkaj < π: ð17Þ

Each dispersion has the expected continuum limit [43]
CσðkÞ → − 1

2
signðσkÞ for jkaj ≪ 1, up to a factor of 2 for

the sine dispersion due to fermion doubling. The difference
appears near the boundary jkaj ¼ π=a of the Brillouin
zone. As shown in Fig. 3, only the tangent dispersion gives
a propagator that is continuous across the Brillouin zone
boundary. In real space, the discontinuity shows up as an
oscillation of CσðxÞ for separations x that are even or odd
multiples of a; see Fig. 4. This is a known artefact of a finite
band width [44] that is avoided by tangent fermions: their
CσðxÞ is close to the continuum result i=2πx for x larger
than a few lattice spacings.
It is essential that the spatial discretization is accom-

panied by a discretization of (imaginary) time: if we would

FIG. 3. Free-fermion propagator in momentum space at zero
temperature, calculated for three different discretization schemes.
The plots follow from Eqs. (15)–(17) for γ ¼ 1, σ ¼ þ1. Only the
tangent fermion discretization is continuous at the Brillouin zone
boundary ka ¼ �π.
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only discretize space, taking the limit τ → 0 at fixed a, then
γ → 0 and the propagator tends to the wrong limit,

lim
τ→0

CσðxÞ ¼
1

2
iσ

Z
π=a

0

sin kx dk ¼ iσsin2ðπx=2aÞ
πx

; ð18Þ

irrespective of how space is discretized. This deficiency of
the sawtooth (SLAC) approach was noted in Ref. [24].
Luttinger liquid correlators—We now include the

Hubbard interaction (13) in the discretized Euclidean
action (12), and evaluate the path integral (10) numerically
by the quantum Monte Carlo method [45]. In a Luttinger
liquid the zero-temperature correlators decay as a power
law [8],

C2
σ ∝ x−K−1=K; Rx ∝ x−2K; ð19aÞ

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − κÞ=ð1þ κÞ

p
; κ ¼ Ua

2πvF
∈ ð−1; 1Þ: ð19bÞ

For repulsive interactions, U > 0 ⇒ K < 1, the transverse
spin-density correlator Rx decays more slowly than the
1=x2 decay expected from a Fermi liquid.
Results for the interaction dependent decay are shown in

Fig. 5. The data from the quantum Monte Carlo calculation
of RxðxÞ is compared with the predictions from bosoniza-
tion theory [26]. The power law decay (19) applies to an
infinite 1D system. For a more reliable comparison with the
numerics we include finite size effects in the bosonization
calculations [45].
The finite band width 1=τ on the lattice requires that the

dimensionless interaction strength κ is small compared to
unity. As we see in Fig. 5 the agreement with the continuum
results (dashed curves) remains quite satisfactory for jκj up
to about 0.4. We stress that this comparison does not
involve any adjustable parameter.
Conclusion—We have shown that it is possible to

faithfully represent an interacting Luttinger liquid on a
lattice without compromising the fundamental symmetries
of massless fermions. The key step is a space-time
discretization of the Lagrangian that is local but does
not introduce a spurious second species of low-energy
excitations. We have tested the validity of this “tangent
fermion” approach in the simplest setting where we can
compare with the known bosonization results in the
continuum.

FIG. 4. Same as Fig. 3 but now in real space. The continuum
result at zero temperature is CðxÞ ¼ i=2πx (solid curve), close to
the tangent fermion discretization (black dots). The dashed lines
are guides to the eye to highlight the oscillatory behavior of the
sawtooth and sine discretizations.

FIG. 5. Main panels: the data points show the quantum Monte Carlo results for the correlator RxðxÞ ¼ 1
4
hψ†ðxÞσxψðxÞψ†ð0Þσxψð0Þi

of the helical Luttinger liquid on the space-time lattice with parameters β=τ ¼ 34, L=a ¼ 71, vF ¼ a=τ. The different colors refer to
different Hubbard interaction strengths κ ¼ Ua=2πvF, repulsive on the left panel and attractive on the right panel. In the latter case the
correlator Rx changes sign; the plot shows the absolute value on a log-linear scale. The x dependence at x and L − x is the same because
of the periodic boundary conditions, so only the range 0 < x < L=2 is plotted. The numerical data on the lattice is compared with the
analytical bosonization theory in the continuum (dashed curves [45]). Note that the lattice calculation slightly overestimates the
interaction strength for both the repulsive and attractive cases. The inset in the left panel combines data for both repulsive and attractive
interactions on a log-log scale to compare with the power law decay (19) (dashed lines).
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We anticipate that tangent fermions can become a
powerful tool for the study of topological states of matter,
where it is essential to maintain the topological protection
of an unpaired Dirac cone. An application to the fermionic
Casimir effect was published in Ref. [46]. We have shown
that the technique can be applied to quantum Monte Carlo
calculations, but we expect it to be more generally
applicable to fermionic lattices. Indeed, a second quantized
formulation has very recently been used to avoid fermion
doubling in the context of tensor networks [47].
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