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Although plasmons and phonons are the collective excitations that govern the low-energy physics of
doped semiconductors, their nonadiabatic hybridization and mutual screening have not been studied from
first principles. We achieve this goal by transforming the Dyson equation to the frequency-independent
dynamical matrix of an equivalent damped oscillator. Calculations on doped GaAs and TiO2 agree well
with available Raman data and await immediate experimental confirmation from infrared, neutron,
electron-energy-loss, and angle-resolved photoemission spectroscopies.

DOI: 10.1103/PhysRevLett.133.116402

Doped semiconductors play the most essential role in
modern electronics. An important property of doped semi-
conductors is the presence of low-energy collective charge
excitations, plasmons. Plasmons in doped semiconductors
strongly couple to other low-energy excitations, particu-
larly phonons. This coupling determines the low-energy
spectroscopic properties of doped semiconductors. In
addition, electron-phonon and electron-plasmon inter-
actions are the two major contributions to electron scatter-
ing at room temperature. Therefore, understanding and
modeling the interplay of plasmons and phonons and their
coupling to electrons is crucial for studying doped
semiconductors.
Plasmon-phonon coupling can be divided into three

regimes in order of increasing doping: anti-adiabatic,
resonant, and adiabatic [1,2]. The change in the plasmon
energy relative to the phonon energy governs the crossover
from insulators to metals and affects many properties, such
as the splitting between longitudinal optical (LO) and
transverse optical (TO) phonons and the presence of
long-range electric fields (Table I). At low doping, the
phonon energy is higher; hence, the plasmons do not screen
the phonons, and both the LO-TO splitting and phonon-
induced long-range electric fields are present, just as in
undoped systems. At intermediate doping, where the
plasmon energies are comparable to the phonon energies,
the two modes hybridize strongly [3–6]. This hybridization
leads to a level anticrossing behavior that was confirmed by
Raman experiments on GaAs [7,8]. At even higher doping,
the plasmon energy exceeds the LO phonon energy, and the
plasmons fully screen the electric field generated by the

phonons. The LO-TO splitting and the electron-phonon
coupling are then strongly suppressed.
A major hurdle in studying plasmon-phonon coupling in

real materials has been the lack of an efficient first-
principles methodology. In the anti-adiabatic and resonant
regime, one needs a nonadiabatic description of phonons
[9–12] that goes beyond the Born-Oppenheimer approxi-
mation. In particular, one needs to capture the full fre-
quency dependence of the dielectric function and the
phonon self-energy [13]. Because of the high computa-
tional cost of such calculations, few studies considered the
nonadiabatic coupling [14–17], relying on simplified mod-
els of the electron or phonon dispersion. Previous first-
principles studies on doped semiconductors, namely,
Refs. [1,18], have neglected any feedback from phonons
to plasmons and used the electron gas model to compute the
free-carrier screening. References [19,20] represent a dif-
ferent line of work, which treats doping using the static
density functional perturbation theory (DFPT) and thus
cannot reproduce any nonadiabatic effects. Another impor-
tant open problem is to understand how the plasmon-
phonon modes couple to the electrons. While there have
been separate first-principles calculations on the electron-
phonon and electron-plasmon couplings [18,21], a unified
first-principles theory of the electron-plasmon-phonon
coupling has not been developed. Developing a first-
principles method for calculating the plasmon-phonon
hybridization in all three regimes remains an open chal-
lenge in modeling doped semiconductors [13,22].
In this study, we develop a fully first-principles descrip-

tion of the plasmon-phonon hybridization in doped semi-
conductors. We transform the nonadiabatic problem of
computing the phonon Green’s function into an adiabatic
problem of diagonalizing a plasmon-phonon dynamical
matrix, significantly reducing the computational cost. We
first validate our new method by quantitatively reproducing
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without any free parameters the dispersion of plasmon-
phonon hybrids in GaAs [8] (Fig. 1). We then study the
complicated wave-vector-direction-dependent plasmon-
phonon coupling of anatase TiO2, presenting many pre-
dictions that await immediate experimental confirmation by
infrared (Fig. 2), neutron scattering [Fig. 3(a)], electron
energy loss [Fig. 3(b)], and angle-resolved photoemission
(Fig. 4) spectroscopies. Our first-principles method can
also be widely used to study polarons, transport, and
superconductivity of doped semiconductors.
To model plasmon-phonon hybridization, we first per-

form a static DFPT calculation of the undoped system. We
then treat the doping using the rigid-band approximation
and incorporate the screening effects in the random phase
approximation. The doped carriers induce a phonon self-
energy [10,23–25]

Πμνðq;ωÞ ¼ ðglrqμÞ�δχðq;ωÞglrqν; ð1Þ

where q is the phonon wave vector, ω the frequency, μ; ν ¼
1; · · ·; Nph the phonon mode indices, δχðq;ωÞ the interact-
ing susceptibility of the doped carriers Sec. S2 in [26], and
glrqμ the long-range electron-phonon vertex Sec. S5 in [26].
This self-energy is nonadiabatic, i.e., frequency dependent,
and thus leads to a nontrivial renormalization that gives rise
to additional peaks in the phonon spectral function.
When calculating the interacting electronic susceptibility

in the random phase approximation, we neglect local
field effects, as has been validated for doped semiconduc-
tors [19,55]. We model the frequency dependence of the
susceptibility using a plasmon-pole model [56]:

δχðq;ωÞ ¼ 1

Uq

Ω2
q0

ðωþ iγq0Þ2 − ω2
q0
; ð2Þ

where Uq ¼ 4πe2=ðVq2ϵ∞q̂ Þ with ϵ∞q̂ ¼ q̂ · ϵ∞ · q̂ is the
macroscopic Coulomb interaction screened by the elec-
tronic dielectric tensor ϵ∞ of the undoped system and V the
unit cell volume. The model has three parameters,Ωq0,ωq0,
and γq0: the plasmon strength, frequency, and linewidth.
The plasmon linewidth is nonzero in the electron-hole
continuum and captures the decay of plasmons into
electron-hole pairs. Our method can be straightforwardly
generalized to treat more complex frequency dependences
using the multipole approach [57] (see Sec. S1.E in [26] for
details).
With the bare phonon Green’s function

D0
μνðq;ωÞ ¼ δμν

1

ðωþ i0þÞ2 − ω2
qν
; ð3Þ

where ωqν is the phonon frequency of the undoped system,
the full Green’s function D is computed by solving the
Dyson equation

FIG. 1. Doping-dependent energy of the plasmon-phonon
(pl-ph) hybrids of n-doped GaAs. The solid black (dash-dotted
blue) curves show the result of a nonadiabatic plasmon-phonon
(static) calculation. The circles show the experimental measure-
ments of Ref. [8]. The horizontal dashed red line shows the
optical phonon energy at q ¼ 0, which corresponds to the TO
phonon energy in the case of GaAs. The green dashed line shows
the bare plasmon energy. We use the experimental wave vector
q ¼ 8 × 10−4 Å−1 in the [110] direction. The vertical dotted line
denotes the density n ¼ 2 × 1015 cm−3 where the Thomas-Fermi
wave vector qTF is equal to the experimental wave vector. All
calculations in this Letter are performed for T ¼ 300 K.

FIG. 2. Doping- and wave-vector-direction-dependent energy
of the plasmon-phonon hybrids of n-doped anatase TiO2 for wave
vectors of magnitude q ¼ 2 × 10−3 Å−1. Only the hybridized
modes are plotted; the other, pure TO or infrared-inactive phonon
modes do not hybridize with plasmons.

TABLE I. Three regimes of plasmon-phonon (pl-ph) hybridi-
zation. ωpl and ωph denote the plasmon and phonon energy scales,
respectively. (O�: The LO phonons form a plasmon-phonon
hybrid, making the concept of LO-TO splitting unclear.).

Regime Energies
LO-TO
splitting

Long-range
electric field

Anti-adiabatic ωpl ≪ ωph O Phonon
Resonant ωpl ≈ ωph O� pl-ph hybrid
Adiabatic ωpl ≫ ωph X Plasmon
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D−1
μν ðq;ωÞ ¼ ðD0Þ−1μν ðq;ωÞ − Πμνðq;ωÞ: ð4Þ

Solving Eq. (4) at each ω inflates the computational cost,
making this calculation unsuitable for a first-principles
application dealing with a large number of wave vectors or
materials with a complex unit cell.
Remarkably, it was found that one can exactly transform

the problem of solving a frequency-dependent fermionic
Dyson equation into a simpler problem of diagonalizing a
frequency-independent matrix by writing the self-energy
as a sum over poles, in the context of dynamical mean-
field theory [58] and GW [59] calculations. In a different
context, semiclassical studies of phonon-polaritons [60] and
spin-lattice coupling [61] have developed dynamical matri-
ces that describe the hybridization of phonons with other
bosonic modes. We combine these fascinating ideas and
apply them to bosonic plasmon-phonon hybridization,
thereby developing a method of solving the phonon
Dyson equation via a frequency-independent, ðNph þ 1Þ-
dimensional plasmon-phonon dynamical matrix. In addi-
tion, we find that one can incorporate finite bosonic line-
widths, which are essential for our study, by diagonalizing a
2ðNph þ 1Þ-dimensional dynamical matrix for a damped
oscillator.
If the plasmon linewidth is zero (γq0 ¼ 0þ), the phonon

Green’s function has Nph þ 1 poles whose energy is the
square root of the eigenvalues of an (Nph þ 1)-dimensional
plasmon-phonon dynamical matrix

C̃q ¼

0
BBBBB@

ω2
q0 cq1 cq2 � � �

c�q1 ω2
q1 0 � � �

c�q2 0 ω2
q2 � � �

..

. ..
. ..

. . .
.

1
CCCCCA
; ð5Þ

where the plasmon and phonon frequencies are on the
diagonals and the plasmon-phonon coupling amplitudes

cqν ¼ Ωq0glrqν=
ffiffiffiffiffiffi
Uq

p ð6Þ

on the wings. We denote objects in the (Nph þ 1)-
dimensional plasmon-phonon basis by a tilde. They have
indices α ¼ 0;…; Nph, where 0 corresponds to the plas-
mon, and the others to the phonons.
We diagonalize C̃q with orthonormal eigenvectors as

XNph

α0¼0

C̃qαα0Ṽ 0
qα0β ¼ ω̃2

qβṼ
0
qαβ: ð7Þ

The eigenvalue ω̃qβ is the energy of a plasmon-phonon
hybrid mode, and the eigenvector Ṽ 0

qαβ encodes the weight
of the plasmon (α ¼ 0) and phonons (α ¼ 1;…; Nph) of the
hybrid mode. The phonon Green’s function can be written
as a sum over these hybrid modes:

FIG. 3. (a) Phonon spectral function and (b) inverse dielectric function of n-doped anatase TiO2. We add an artificial broadening of
0.5 meV to the bare phonon Green’s functions for visualization. The third column shows the results obtained with the static
approximation, while the others show the results of nonadiabatic plasmon-phonon calculations. The dotted vertical lines in the third
column denote the Thomas-Fermi wave vector, the wave vector where the static dielectric function equals twice ϵ∞q̂ . In (b), we plot only
the modes contributing to the dielectric function.
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Dμνðq;ωÞ ¼
XNph

β¼0

Ṽ 0
qμβṼ

0�
qνβ

ðωþ i0þÞ2 − ω̃2
qβ

: ð8Þ

The dielectric function can be calculated similarly Sec. S81
in [26].
One can derive analogous results for nonzero plasmon

linewidth γq0 ≠ 0 by solving a damped oscillator problem,
whose dynamical matrix in the generalized position-veloc-
ity coordinate basis is given by

�−iΓ̃q 1

C̃q −iΓ̃q

�
; ð9Þ

where Γ̃qαα0 ¼ δαα0γqα and 1 is an (Nph þ 1)-dimensional
identity matrix. Now, the plasmon-phonon hybrids have
complex eigenvalues whose real and imaginary parts
correspond to the energy and linewidth of the hybrid
mode, respectively. See Sec. S1 for the details of the
derivation of Eqs. (5)–(9) [26].
We first apply our plasmon-phonon method to GaAs, a

prototypical material for studying plasmon-phonon
hybridization [7,8]. Figure 1 shows the calculated doping
dependence of the plasmon-phonon hybrid energies at
300 K, compared to the measured Raman data [8]. We
find good quantitative agreement between the experiment
and theory without any free parameters. The static approxi-
mation completely fails to capture the plasmon-phonon
hybridization, leading to a vanishing LO-TO splitting at
n > 2 × 1015 cm−3, the density over which the Thomas-
Fermi wave vector exceeds the experimental momentum
transfer. Moreover, for an infinitesimal q, the static
approximation gives vanishing LO-TO splitting at all
doping levels, while the dispersion obtained from the
nonadiabatic calculation remains invariant.
We now study plasmon-phonon coupling in anatase

TiO2. Anatase is a stable, naturally abundant, and nontoxic
material widely used in photocatalytic, photovoltaic, and
electronic applications [62–67]. Because of its highly
tunable electron doping, which is achievable up to 3.5 ×
1020 cm−3 [68], and strong electron-phonon coupling,
TiO2 has been a test bed for studying electron-phonon
coupling in doped semiconductors, both experimentally
[68–70] and theoretically [1,16,18].
Figure 2 shows the energies of the plasmon-phonon

hybrids for wave vectors with infinitesimal magnitudes at
300 K. Because of the tetragonal lattice structure with a D4h
point group symmetry, one to three phonon modes couple
to the plasmons, depending on the direction of the wave
vector. The remaining, purely TO or infrared-inactive
phonons do not couple to the plasmons; hence, their
energies are doping independent. The rich doping depend-
ence and anisotropy of the hybrid modes can be confirmed
by infrared spectroscopy.

Figure 3 shows the doping-dependent phonon spectral
function and the imaginary part of the inverse dielectric
function, which can be measured by neutron scattering and
electron energy loss spectroscopies, respectively. Because
of the highly anisotropic effective mass, the plasmon
energy is anisotropic and discontinuous at q ¼ Γ [71].
Our first-principles calculations fully reveal the anisotropic
doping dependence of the plasmon-phonon hybridization.
At low doping (n ¼ 1 × 1018 cm−3), the in-plane and out-
of-plane plasma frequencies are both below the correspond-
ing LO frequencies, and TiO2 is in the anti-adiabatic
regime. At n ¼ 1 × 1019 cm−3, the in-plane LO phonons
and plasmons are resonant, while the out-of-plane LO
phonon is still in the anti-adiabatic regime. At
n ¼ 2 × 1020 cm−3, the in-plane LO phonons are fully
screened and are in the adiabatic regime with vanishing
LO-TO splitting, while the out-of-plane phonons are in the
resonant regime. This behavior is also reflected in the
inverse dielectric function, where the signal is strongest for
the LO phonon, hybrid modes, and plasmons in the anti-
adiabatic, resonant, and adiabatic regimes, respectively.
Moreover, we find a momentum-direction- and momen-
tum-magnitude-dependent anticrossing between plasmons
and phonons, as their bare energies approximately scale as
q2 and q0, respectively.
Nonadiabaticity is crucial for the description of phonons

in the anti-adiabatic and resonant regimes. Unlike the
results from the nonadiabatic calculations, static screening
yields adiabatic phonons with vanishing LO-TO splitting,
continuous spectral functions, and no plasmon-phonon
hybridization. It also overly screens the phonons and
underestimates the inverse dielectric functions, especially
for wave vectors smaller than the Thomas-Fermi wave
vector. These problems (see the third column in Fig. 3) arise
from the false assumption of perfect adiabatic screening in
the Born-Oppenheimer approximation.
Our new method allows one to efficiently study the

coupling of plasmon-phonon hybrids to electrons without
the need for explicit frequency integration. Only minor
modifications to the existing framework for electron-
phonon coupling calculations are required. For example,
the electron self-energy can be calculated as the sum over
theNph þ 1 hybrid modes, just as the sum over the phonons
in electron-phonon calculations:

ImΣpl-ph
nk ¼ Im

1

Nq

X
mq

XNph

β¼0

X
�

jg̃mnβðk;qÞ2jðf�mkþq þ ñqβÞ
εnk − εmkþq � ω̃qβ þ i0þ

:

ð10Þ

Here, g̃mnβ is the electron-hybrid coupling vertex [S66], Nq

the number of sampledq points, fþmkþq theFermi-Dirac occu-
pation at the electron energy εmkþq, f−mkþq ¼ 1 − fþmkþq,
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and ñqβ ¼ 1=ðeω̃qβ=kBT − 1Þ the Bose-Einstein occupation of
the plasmon-phonon hybrids. See Sec. S2 for details [26].
Figure 4 shows the imaginary part of the electron self-

energy, which can be directly measured by angle-resolved
photoemission spectroscopy [72–74]. The self-energy aris-
ing from statically screened phonons [19] can be signifi-
cantly lower than the correct, hybrid-induced self-energy. A
possible ad hoc correction is to add the bare-plasmon-
induced self-energy [18,21] to the static-phonon-induced
self-energy. This correction works well in the metallic
regime. However, it overestimates the self-energy when the
electron concentration is low because the screening of the
electron-plasmon coupling by higher-energy phonons is
neglected.
Our plasmon-phonon method opens the door to first-

principles studies of plasmons and phonons in doped
semiconductors. Because of its simplicity and efficiency,
it can be widely used for many applications: various
spectroscopies, optical properties, transport, and super-
conductivity. The calculated plasmon-phonon dispersion,
spectral function, dielectric function, and electron self-
energy can be directly compared with experiments such as
infrared, Raman, neutron, electron energy loss, and angle-
resolved photoemission spectroscopies. Formation of
polaronic satellites due to plasmon-phonon hybrids
[1,2,75] and superconductivity in dilute materials [76,77]
are also interesting avenues for future research.
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[49] S. Poncé, E. Margine, C. Verdi, and F. Giustino, EPW:
Electron-phonon coupling, transport and superconducting
properties using maximally localized Wannier functions,
Comput. Phys. Commun. 209, 116 (2016).

PHYSICAL REVIEW LETTERS 133, 116402 (2024)

116402-6

https://doi.org/10.1103/PhysRevB.108.205102
https://doi.org/10.1103/PhysRevB.108.205102
https://doi.org/10.1103/PhysRevB.97.165113
https://doi.org/10.1103/PhysRevLett.129.185902
https://doi.org/10.1103/PhysRevB.107.094308
https://doi.org/10.1103/PhysRevB.107.094308
https://doi.org/10.1103/PhysRevB.94.115208
https://doi.org/10.1103/PhysRevB.94.115208
https://doi.org/10.1103/PhysRevB.92.245108
https://doi.org/10.1103/PhysRevX.13.041009
https://doi.org/10.1103/PhysRevB.107.024305
https://doi.org/10.1103/PhysRevB.107.024305
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.116402
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.116402
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.116402
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.116402
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.116402
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.116402
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.116402
https://doi.org/10.1103/PhysRevLett.115.176401
https://doi.org/10.1103/PhysRevLett.115.176401
https://doi.org/10.1103/PhysRevB.92.054307
https://doi.org/10.1103/PhysRevX.9.021050
https://doi.org/10.1103/PhysRevLett.125.136601
https://doi.org/10.1103/PhysRevLett.125.136601
https://doi.org/10.1103/PhysRevB.102.094308
https://doi.org/10.1103/PhysRevLett.125.136602
https://doi.org/10.1103/PhysRevLett.125.136602
https://doi.org/10.1103/PhysRevB.102.125203
https://doi.org/10.1103/PhysRevB.102.125203
https://doi.org/10.1016/0009-2614(96)00440-X
https://doi.org/10.1016/0009-2614(96)00440-X
https://doi.org/10.1103/PhysRevLett.127.067401
https://doi.org/10.1063/1.2565690
https://doi.org/10.1063/1.2565690
https://doi.org/10.1103/PhysRevB.84.195114
https://doi.org/10.1088/1361-6633/ab6a43
https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1103/PhysRevB.88.085117
https://doi.org/10.1016/j.cpc.2018.01.012
https://doi.org/10.1016/j.cpc.2018.01.012
https://doi.org/10.1103/PhysRevB.45.13244
https://doi.org/10.1103/PhysRevB.45.13244
https://doi.org/10.1524/zkri.1972.136.16.273
https://doi.org/10.1524/zkri.1972.136.16.273
https://doi.org/10.1088/1361-648X/ab51ff
https://doi.org/10.1088/1361-648X/ab51ff
https://doi.org/10.1103/PhysRevB.76.165108
https://doi.org/10.1103/PhysRevB.76.165108
https://doi.org/10.1016/j.cpc.2016.07.028


[50] N. Marzari and D. Vanderbilt, Maximally localized gener-
alized Wannier functions for composite energy bands, Phys.
Rev. B 56, 12847 (1997).

[51] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D.
Vanderbilt, Maximally localized Wannier functions: Theory
and applications, Rev. Mod. Phys. 84, 1419 (2012).

[52] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah,
Julia: A fresh approach to numerical computing, SIAM Rev.
59, 65 (2017).
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