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Flat band lattice systems promote the appearance of perfectly compact bulk states, whereas topology favors
edge localization. In this work, we report the existence of compact topological edge states on flux-dressed
photonic graphene ribbons. We found that robust localization is achieved through a synergy of Aharonov-
Bohm caging and topological protection mechanisms. The topological nontriviality of the compact edge
states is characterized through both theoretical derivations and experimental observations of an integer Zak
phase obtained from the mean chiral displacement. Experiments are performed using direct laser writing of a
graphene ribbon photonic lattice having 0 or π effective magnetic fluxes. Mode stability is demonstrated by
the exceptional localization of the edge compact mode and its resilience to fabrication tolerances and input
phase deviations. Our findings demonstrate the existence of perfectly compact topological edge states, as a
concrete and promising example of synergy in between flat band physics and topology.

DOI: 10.1103/PhysRevLett.133.116304

The quest for materials with superconducting properties
at convenient operating temperatures has gained new
momentum with the possibility to investigate such materi-
als in affordable optical experiments, notably in photonic
lattices [1–5]. Departing from the traditional Bardeen-
Cooper-Schrieffer theory, it has been hypothesized that
the electron pairing around dispersionless energy bands
results in superconductivity with the critical temperature
linearly proportional to the electron interaction strength [6].
However, dispersionless flat bands (FBs) could store
energy in the modes confined, for example, at edges,
surfaces or interfaces, and are therefore highly sensitive
to environmental influences and fabrication errors [7–11].
On the other hand, stability can be enhanced by an interplay
in between Aharonov-Bohm caging and topological pro-
tection, such as that realized in Creutz-like ladders [12–15].
However, k independence of FBs does not permit deter-
mination of the topological invariants, neither directly,
based on the Berry curvature, nor indirectly, based on
analogy with the Su-Schrieffer-Heeger (SSH) model
[16,17]. All this makes the design of ultrarobust edge
states with a FB spectrum challenging.
In response to this challenge, we design a graphenelike

photonic ribbon [18] whose topological properties are
controlled by a synthetic flux. The induced transitions
between trivial and nontrivial topological phases enable
probing of the dispersionless band topology and determi-
nation of the topological invariants by standard means:
mean chiral displacement (MCD) [19–21], two-band

SSH-based graphical method, and numerical projector
method [17,22,23]. While a range of fluxes drives the
system into a topologically nontrivial phase, a particular
flux value Φ ¼ π yields destructive interference and a fully
flat band spectrum. The corresponding edge modes are
ultraprotected by the synergy of Aharonov-Bohm (AB) and
topological effects. We use the femtosecond (fs) laser
writing technique [24] to fabricate several quasi-1D gra-
phene ribbon lattices in armchair configuration [18,25,26].
The π flux is implemented by inserting tuned S and P
waveguides in a specific sequence through the lattice. By
determining the MCD from the experimental data, we
confirm the nontriviality of the central bands and the
topological origin of the respective edge modes. We
experimentally excite these zero edge states and demon-
strate their robustness to phase variations and fabrication
tolerances. To the best of our knowledge, this is the first
complete experimental evidence of an ultrarobust and
perfectly compact topologically nontrivial edge state in
one-dimensional lattices.
We start by presenting a method for probing the topology

of a lattice considering an artificial flux. We do this on a
model of a graphenelike ribbon in the armchair configu-
ration, as the one sketched in Fig. 1(a). In the absence of
flux, the underlying lattice structure is characterized by
bipartite and top-bottom symmetries, in which each unit
cell consists of six linearly coupled sites. Evolution
of the complex optical field ψn ¼ ðAnBnCnDnEnFnÞT ,
with n ¼ 1;…; N, and N the number of unit cells,
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is governed by a set of linear Schrödinger coupled
equations in kx space:

i
dψ̃ðkxÞ
dz

¼ ĤðkxÞψ̃ðkxÞ: ð1Þ

Here, ψ̃ðkxÞ is the optical field in kx-space, kx the trans-
versal quasimomentum, z the propagation coordinate, and
Ĥ the Bloch Hamiltonian. The presence of flux Φ breaks
the top-bottom lattice symmetry and introduces imaginary
components into the coupling coefficients:

Ĥ ¼

0
BBBBBBBB@

0 μ� 0 ν� 0 μ

μ 0 μ� 0 0 0

0 μ 0 μ� 0 0

ν 0 μ 0 μ� 0

0 0 0 μ 0 μ�

μ� 0 0 0 μ 0

1
CCCCCCCCA
; ð2Þ

where μ ¼ Veiϕ and ν ¼ Veikx are the complex intra- and
intercell coupling coefficients, respectively, and ϕ ¼ Φ=6
[27]. Ĥ possesses chiral symmetry: Ĥ ¼ Ĝ Ĥ Ĝ ¼ −Ĥ,
with Ĝ as the chirality operator given by Ĝ¼ðB̂þD̂þ F̂Þ−
ðÂþ Ĉþ ÊÞ. (Â ¼ P

n jAnihAnj is the sublattice projector
operator on A lattice sites, B̂ on B site components, etc.)
Now, we compute the eigenvalue spectrum fλg, repre-

senting the propagation constants along the z direction, for
a finite lattice with N ¼ 50 unit cells. We show our results
in Fig. 1(b), where the darker color corresponds to a smaller
participation ratio, i.e., stronger localization. In the absence
of flux [see Fig. 1(c)] the bipartite ribbon spectrum contains
an empty gap around zero, a pair of symmetric flat bands
at λ ¼ �V (with the FB states as insets), and two pairs
of dispersive bands [18]. In this case, there are no isolated
bands, and the topological invariant is not defined.
Interestingly, the introduction of fluxΦ preserves the chiral
symmetry of the system. Singular FBs are transformed into
gapped dispersive bands, and an opening of the two gaps
between outer bands hosting a doublet of edge modes each
[circles and squares in Figs. 1(b) and 1(d)]. A further
increment in flux Φ results in the closing and reopening of
the central gap at Φ ¼ 2π=3 (dashed vertical line). Here,
the creation of a pair of λ ¼ 0 (zero) edge states is observed
[stars in Figs. 1(b) and 1(d)], in analogy with a SSH lattice
[29]. These degenerated edge modes decay exponentially
from the respective surface and their localization increases
as the central band gap increases [27]. The spectrum
symmetry dictates the reverse trend as the flux is further
increased, closing the gap at Φ ¼ 4π=3 (dashed vertical
line) and restoring the original topologically trivial lattice
properties. Therefore, a continuous modification of flux Φ
transforms the lattice topology, leading to the emergence of
compact and robust edge states.
For a particular value of flux Φ ¼ π, the Aharonov-

Bohm effect causes the bands to collapse into flat
bands [30], forming a fully flat multiband spectrum [see
Figs. 1(b) and 1(d)]. The flatness is associated with
degeneration of 6ðN − 1Þ eigenvalues into 6 flat bands
at λ ¼ �2.17;�1.48;�0.31 V with N − 1 times degener-
ation each. In the gaps in between the flat bands, the triplet
of double degenerated edge modes continues to exist at
λ ¼ 0;� ffiffiffi

3
p

V [horizontal dashed lines and edge mode
profiles in Fig. 1(d)]. As a result of destructive interference,
all the corresponding edge mode profiles feature zero light
power at the connecting lattice sites A or D. This fully
prevents state transport and bulk dispersion. Specifically,
at Φ ¼ π, the zero edge modes are perfectly compact
and formed by only three nonzero amplitude sites. These
perfectly compact edge states cannot be formed by any FB
state superposition [31].
An estimate of bulk topological invariant is mandatory

to ascertain the topological nontriviality of the compact
edge states. However, topological invariants elude a clear
definition in systems with a FB k-independent spectrum.

(a)

(b)

(c)

(e) (f)

(d)

FIG. 1. (a) Graphenelike ribbon lattice with flux Φ. (b) Band
spectrum of a finite lattice (N ¼ 50) as a function of fluxΦ. Color
indicates the respective participation ratio. (c) and (d) The band
spectra λ vs kx for fluxes Φ ¼ 0 and π, respectively. Profiles in
(d) correspond to edge states at dashed lines. (e) Mean chiral
displacement (MCD) as a function of Φ (black solid line). Gray
lines show MCD for single A,C, E site excitations.
(f) DetðhÞ ¼ − cos kx þ 2 cosðΦ=2Þ þ i sin kx in the complex
plane. In (b)–(e) V ¼ 1.
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To resolve this, we tune the synthetic flux and evaluate the
invariant (Zak phase in this case), in the k-dependent
spectral region, upon which we formally converge to values
at Φ ¼ π. Zak phase, also known as winding number
[17,22], provides information about the winding behavior
of the energy bands in the momentum space, distinguishing
between different topological lattice phases. Because of the
bulk-edge correspondence [32–34], an integer value of Zak
phase in units of π is equal to the number of edge-mode
pairs within a gap. The nontriviality of the zero edge modes
is proven by the MCD calculated as a displacement (in cells
units) of the spatial profile from the input position [19]. It is
an extension of the mean field displacement (MFD), which
is empirically determined as the mean displacement of the
center of a propagating wave packet [35–37], to chiral
multiband SSH-like lattices [27]. We excite one by one
each site inside the central unit cell hosting the eigenstates
of the chiral operator: A, C, E or B,D, F, which correspond
to the eigenvalues 1 and −1 of the chiral operator,
respectively. The MCD is then determined as an average
of the three MFDs. The Zak phase of the central ribbon
bands is subsequently defined as twice the MCD value.
Figure 1(e) shows the dependence of MCD on flux and that
the MCD takes values close to −0.5 in the whole nontrivial
region: Φ∈ ½2π=3; 4π=3�. Thus the MCD can be used as a
clear nontriviality parameter in a lattice with multiple FBs.
Reopening and reclosing of the central gap, accompa-

nied by the appearance of zero edge modes, is analogous to
what is observed in the SSHmodel. The bipartite symmetry
provides ability to transform ĤðkÞ of the flux-dressed
ribbon lattice into an off-diagonal block SSH-like matrix
parametrized by flux Φ [27]. Then, the winding number of
the ribbon can be estimated by plotting the determinant
of the off-diagonal submatrix h in the complex plane [see
Fig. 1(f)] and observing how many times it winds around
the origin. The topological phase transition is marked by
the zeros of the determinant at Φ ¼ 2π=3 and Φ ¼ 4π=3.
The flux values within these limits render the lattice
topologically nontrivial regime. ForΦ ¼ π, the determinant
draws a zero-centered circle reproducing the kx invariance.
An additional confirmation of the zero-mode topological
origin is achieved by the projector method [22,23,32].
This method utilizes the band projectors P̂ðkÞ over the
Ĥ eigenvalue basis, as described at Supplemental Material
[27]. Based on all these arguments, we conclude that the
zero edge modes found in this model are protected by both
destructive interference (arising from Aharonov-Bohm
caging) and lattice topology. Hence, these states are
perfectly localized, compact, and ultrastable stationary
solutions.
We provide experimental evidence of the trivial and

nontrivial topological properties of a graphene-like ribbon
photonic lattice in two experimentally available cases:
Φ ¼ 0 and π. Different lattices are fabricated inside an
L ¼ 70 mm borosilicate glass wafer by direct laser

writing [24], as sketched in Fig. 2(a). A lattice composed
of S waveguides only [18] [see sketch in Fig. 2(b1) and
implementation in Fig. 2(c1)] implies a trivial flux Φ ¼ 0.
A nontrivial flux is induced by replacing a set of S
waveguides with dipole-like P waveguides at every other
hexagon, as shown in Figs. 2(b2) and 2(c2). The presence
of P waveguides on a lattice produces the appearance
of negative coupling constants and, in this specific case,
the effective induction of a flux Φ ¼ π at every closed
ring [30]. An effective interaction of S and P modes is
achieved by a tuning optimization protocol [38], where
their propagation constants are matched at neighboring
waveguides around a given wavelength (∼640 nm in our
experiments).
First of all, we study bulk transport by exploiting the

rather linear dependence of coupling constants on wave-
length [15,37]. Different excitation wavelengths effectively
describe a different dynamical instant “Vz” [27]; therefore,
we capture the transport through the lattice by varying this
parameter [27]. These experiments were performed using a
supercontinuum (SC) laser beam, in the wavelength range
of {630,750} nm, which was tightly focused to excite
individual lattice sites. We first excite the trivial lattice at a

(a)

(b2)

(b1)

(c2)

(c1)

(d1)

(e)

(d2)

FIG. 2. (a) Illustration of the fs-laser writing technique. (b1)
and (b2) S and SP configurations (fluxes denoted in each case).
(c1) and (c2) White-light microscope images for fabricated
lattices. (d1) and (d2) Output intensities after a D site excitation
(yellow circle), on a ribbon with Φ ¼ 0 and Φ ¼ π, respectively.
Excitation wavelengths of both cases are indicated in (d1).
(e) MCD for sites ACE versus wavelength, for trivial (black)
and topological (red) lattices. Gray data in (e) show the averaged
MCD for CE sites only.
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bulkD site [Fig. 2(d1)] and observe a ballisticlike transport,
similar to discrete diffraction of 1D lattices [37]. In this
case, the input excitation does not excite the FB modes and
only the dispersive part of the spectrum is activated.
The excitation of individual B, C, D, E sites results in a
mixture of diffraction and localized energy oscillations at
the input ring region [18,27]. A strongly contrasting
behavior is observed for a nontrivial flux Φ ¼ π, as shown
in Fig. 2(d2). For an identical bulk D excitation, the light
cannot overcome the flux-induced effective barrier and
remains oscillating on a quite reduced area, covering only
two lattice rings. This is a result of the AB caging effect in a
system with a flat-only linear spectrum [see Fig. 1(d)].
Interestingly, the caging effect is observed for a very broad
wavelength range.
For bulk excitation, we compute the MCD from the

experimental data by averaging the mean displacements
of individual excitations of A, C, and E bulk lattice sites
[see Fig. 2(e)], consistently with the lattice chiral symmetry
[27]. For Φ ¼ 0 (black data), the MCD oscillates around
zero, indicating a zero Zak phase. The light is diffracting
strongly through the lattice [Fig. 2(d1)] experiencing
inhomogeneities induced by the fabrication process, which
slightly randomizes the MCD value. The average of CE
sites only (gray data) shows an oscillation around zero, as
these sites mainly excite the FBs, with the light oscillating
mostly inside a single unit cell [27]. For Φ ¼ π, the
nontriviality of the lattice becomes evident with MCD
values around −0.5 (red data). The MCD is closest to −0.5
around the wavelength of 640 nm, for which the non-
triviality condition is fully fulfilled. Therefore, we have
dynamically measured the trivial and nontrivial properties
of the graphenelike ribbon, which naturally depend on the
specific applied flux.
To study the edge excitation, we first excite the site A at

the left edge of both lattices. In the trivial Φ ¼ 0 lattice,
we observe only transport with the light strongly repelled
from the edge [see Fig. 3(a1)]. This is a direct consequence
of the absence of topological protection in trivial lattices. In
contrast, in the presence of a nontrivial flux [see Fig. 3(a2)]
the light remains trapped to the first unit cell, oscillating
locally due to the simultaneous excitation of the three
edge modes shown in Fig. 1(d), right. We plot the center
of mass in Fig. 3(a3) as a function of wavelength, with a
shaded area showing the second moment as an indicator
of the dispersion. We observe that the light escapes away
from the edge and disperses strongly for a trivial lattice
(black data). In the topological case (red data), the light
oscillates within the first unit cell, with minimal
dispersion and a clear revival around 720 nm. While
the tuning condition was optimized at around 640 nm, our
results show that the destructive interference condition at
Φ ¼ π is valid even beyond the tuning zero regime.
Nevertheless, we stop measuring at 750 nm to avoid next-
nearest-neighbor effects.

We further investigate the robustness of the compact
zero-edge modes. We use an image generator setup [27] to
simultaneously excite different lattice sites with a given
amplitude and phase structure. We generate a three-site
input state at 640 nm and excite sites A, C, and E at the left
edge. As shown by yellow and green circles in Fig. 3(b), C
and E are excited in phase, while the relative phase (Δ) in A
is varied around π. Results for a trivial lattice in Fig. 3(b1)
show clear signatures of dispersion and FB oscillations
without a tendency for edge localization. On the other hand,
for Φ ¼ π we observe in Fig. 3(b2) that the light gets
trapped at the first unit cell with almost no dispersion to the
lattice bulk. The localization is maintained regardless of the
phase structure of the input condition, showing the robust-
ness of the compact edge modes to input phase deviations.
This is particularly important in applications in which
the phase of an excitation beam is subject to random
fluctuations.
Finally, we study the compact edge mode propagation

stability and robustness considering fabrication errors.
We fix the input phase to Δ ¼ π and fabricate a z-scan

(a1) (a2)

(a3)

(b1) (b2) (c)

10 mm

20 mm

30 mm

40 mm

50 mm

60 mm

70 mm

Δ = π

630 nm

650 nm

670 nm

690 nm

710 nm

730 nm

750 nm

FIG. 3. (a1) and (a2) Output intensities for an A edge site
excitation of S and SP lattices, respectively, for the same
wavelengths as Figs. 2(d1) and 2(d2). (a3) Center of mass versus
wavelength for S (black) and SP (red) lattices, with a shaded area
showing the second moment. (b) SLM edge excitation: (b1) and
(b2) sweep of the relative input phase Δ in between site A
(yellow) and sites C, E (green). Vertical images show different
input phases around Δ ¼ π (yellow frame). (c) Excitation of the
edge compact topological state at Δ ¼ π versus propagation
distance zs (indicated to the right).
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configuration [30], in which the excited sites A,C, and E (at
the first unit cell) have a full propagation length, while the
rest of the lattice sites have a shorter length zs. To follow the
state evolution, we fabricate 14 lattices with different zs and
show a set of output profiles in Fig. 3(c). We observe an
excellent propagation stability of the compact edge mode.
As each lattice is fabricated independently, a random
fabrication disorder is always present at every sample.
Thus, we observe that the zero-edge mode is quite resistant
to small deviations of the lattice structure.
In conclusion, we have studied the generation of highly

robust topologically protected compact edge modes and,
also, we have established a novel procedure for the
assessment of topological nontriviality via the mean chiral
displacement. Demonstration of the stable compact edge
modes is, for example, a decisive stepping stone towards
unidirectional topological insulators. Further upgrades,
including non-Hermitian Hamiltonians to achieve unidi-
rectional mode propagation or the inclusion of higher
dimensions, could make the topological photonic lattices
a faithful platform for studying ultralow energy electronics
or photonics computing. The experimental implementation
of synthetic fluxes and the corresponding MCD estimation
open the door to the detection of topological nontriviality
in multiband dispersionless systems. We observe the AB
caging effect for a very broad wavelength range, showing
its strong potential for broadband optical computing.
Different geometries [39] or broader sets of effective
magnetic fluxes [40,41] are certainly an experimental
challenge which could guide further research.
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