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In isolated nonlinear optical waveguide arrays, simultaneous conservation of longitudinal momentum
flow (“internal energy”) and optical power (“particle number”) of the optical modes enables study of
coupled thermal and particle transport in the negative temperature regime. Based on exact numerical
simulation and rationale from Landauer formalism, we predict generic photonic version of the Wiedemann-
Franz law in such systems, with the Lorenz number L ∝ jTj−2. This is rooted in the spectral decoupling
of thermal and particle current, and their different temperature dependence. In addition, in asymmetric
junctions, relaxation of the system toward equilibrium shows apparent asymmetry for positive and negative
biases, indicating rectification behavior. This Letter illustrates the possibility of simulate nonequilibrium
transport processes using optical networks, in parameter regimes difficult to reach in natural condensed
matter or atomic gas systems. It also provides new insights in manipulating power and momentum flow of
optical waves in artificial waveguide arrays.
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Precisely engineered optical systems have enabled study
of problems originated from condensed matter and other
branches of physics in clean and controllable setups [1–3].
Recently, such effort has been extended from linear,
Hermitian to nonlinear, non-Hermitian systems [4–8]. An
important insight is description of the complex behavior
of weakly nonlinear coupled optical waveguide arrays within
the framework of statistical thermodynamics [9–11]. It
provides fresh new insight in understanding puzzling optical
phenomena, such as beam self-cleaning [12–14], spatiotem-
poral solitons [15–17], mode-locking [18], from the point of
view of statistical mechanics [19–25].
Given simultaneous particle and energy conservation,

relaxation of an initially nonequilibrium state toward
equilibrium is frequently accompanied by particle and
thermal transport mediated by nonlinear interactions within
the system. As a cornerstone result of linear irreversible
thermodynamics [26], such coupled transport of particle
and thermal current is characterized by a transport matrix,
whose diagonal and off-diagonal elements correspond
to particle (G), thermal (GT) conductance (conductivity),
and thermoparticle (Seebeck and Peltier) transport coef-
ficients, respectively. Study of these transport properties
has gained invaluable information on the equilibrium and
nonequilibrium properties of condensed matter and atomic
gases [27–36]. The celebrated Wiedemann-Franz (W-F)

law links particle and thermal transport coefficients of
the system. It is characterized by the Lorenz number
L ¼ GT=ðGTÞ, which is constant in Fermi liquids L0 ¼
k2Bπ

2=3 with kB the Boltzmann constant. Deviation from
the W-F law indicates decoupling of particle and thermal
transport [36,37], whose origin ranges from strong inter-
particle interaction to singular quasiparticle density of
states. Thus, L has become an important parameter in
the study of wide range of problems, including thermo-
electric [38,39], hydrodynamic [40,41], strong correlated
effects [42], to name a few.
In weakly nonlinear waveguide arrays, the total optical

power and the longitudinal momentum flow along the
waveguides are two conserved quantities. In optical
thermodynamic theory, they are considered as particle
number and internal energy, respectively. This curious
correspondence makes it possible to study coupled particle
and thermal transport in transport junctions made from
such optical systems, which is difficult in natural con-
densed matter system with phonons or magnons due to
the lack of quasiparticle number conservation. By numeri-
cally tracking the thermalization process, we predict a
generic photonic version of the W-F law in such junctions,
with the Lorenz number L ∝ 1=T2 [see Fig. 1(a)]. It does
not depend on details of the lattice structure, model
parameters, and is valid in both positive and negative
temperature regimes. We provide a rationale of this result
using the Landauer transport theory in the classical limit.
Furthermore, we observe asymmetric relaxation of a*Contact author: jtlu@hust.edu.cn

PHYSICAL REVIEW LETTERS 133, 116303 (2024)

0031-9007=24=133(11)=116303(7) 116303-1 © 2024 American Physical Society

https://orcid.org/0009-0004-2957-9447
https://orcid.org/0000-0002-1689-5238
https://orcid.org/0009-0005-0263-0369
https://orcid.org/0000-0001-8518-2816
https://ror.org/00p991c53
https://ror.org/00p991c53
https://ror.org/03c9ncn37
https://ror.org/00p991c53
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.133.116303&domain=pdf&date_stamp=2024-09-11
https://doi.org/10.1103/PhysRevLett.133.116303
https://doi.org/10.1103/PhysRevLett.133.116303
https://doi.org/10.1103/PhysRevLett.133.116303
https://doi.org/10.1103/PhysRevLett.133.116303


junction connecting a square and a honeycomb reservoir
with different sizes, indicating rectification behavior
in asymmetric junctions in the presence of nonlinear
interaction. This Letter illustrates the opportunity to study
fundamental problems of statistical thermodynamics in
unprecedented regimes using engineered optical systems
[43–45]. It may help to resolve the debate on the legitimacy
of negative absolute temperature in thermodynamics [46,47].
Model—We consider transport junction made from two-

dimensionalwaveguide arrays,which consists of two large but
finite-size reservoirs connected by a chain. We study coupled
thermal and power transport properties across the chain. As
shown in Fig. 1(a), each node represents a waveguide, along
which (z direction) the optical wave can propagate. In the
reservoir the nodes are periodically arranged. This is a
prototypical junction structure to study transport properties
of solid-state [48] and cold atom systems [49].
Propagation of the optical modes along the wave-

guides is described by the discrete nonlinear Schrödinger
equation [50,51],

i
dψm

dz
þ κ

X
fng

ψn þ χjψmj2ψm ¼ 0; ð1Þ

with dimensionless parameters ψm, κ, χ representing the
complex wave amplitude, the nearest neighbor coupling
between waveguides and Kerr-type nonlinear coefficient,
respectively. Here, the coordinate z along waveguide plays
the role of time in standard Schrödinger equation, and fng
includes all the nearest neighbors of m.
For weak nonlinear interactions, we can diagonalize the

linear term and obtain the corresponding eigenmode (super-
mode) propagating constant βk and corresponding vector
φk. For a given state ψ , the modal occupancy is obtained
by projection onto each supermode jckj2 ¼ jhφkjψij2.
The system evolves with conserved internal energy
U ¼ P

M
k¼1 εkjckj2 and optical power P ¼ P

M
k¼1 jckj2, with

the total number of modes M, the eigen energy defined
by the negative of βk as εk ¼ −βk with β1 ≥ β2 ≥ � � � ≥ βM.
The system thus has a bounded spectrum between ½ε1; εM�.
The weak nonlinear part introduces coupling among differ-
ent supermodes, such that the system can thermalize to an
equilibrium state through energy and power redistribution
among supermodes. It plays a role similar to molecular
collisions in ideal gas.
Equilibrium thermodynamic theory—We can use the

optical thermodynamic theory to describe each reservoir
[9] (details in Sec. I of the Supplemental Material

FIG. 1. (a) Transport junction made from nonlinear waveguide arrays with square reservoirs. The one-dimensional chain bridges the
left and right reservoirs, such that particle and thermal transport between them can take place. The system is initialized at lower end of
the waveguides, where the two reservoirs are at their own equilibrium state, characterized by equilibrium Rayleigh-Jeans distribution nL
and nR. The initial condition can be realized by elongating the waveguides that belong to the two reservoirs without the central chain,
such that the input power and internal energy in each reservoir can relax separately. Once the central chain is introduced, the whole
junction relaxes toward equilibrium while propagating along z direction. A generic photonic Wiedemann-Franz law is predicted with the
Lorenz number L ∝ T−2, indicating decoupled thermal (JQ) and power (JP) current. Shown in the inset is the energy dependence of
JQðεÞ and JPðεÞ for constant transmission T . (b) ðT; μÞ phase diagram of the square reservoir. Rp and Rn represent the positive and
negative temperature regime, respectively. No equilibrium state exists in the Rf regime. Power (P) for given ðT; μÞ is represented by the
colored code. The black dashed lines are the isopower lines. The red (green) dots are the initial parameters of the left (right) reservoir,
while the yellow dots are their average T̄ and μ̄.
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(SM) [52]). For each reservoir (omitting reservoir index),
starting from the optical entropy,

S ¼
XM
k¼1

ln jckj2; ð2Þ

using the maximum entropy principle, the mode occupancy
can be obtained, which follows the classical Rayleigh-Jeans
(R-J) distribution at thermal equilibrium,

nðεkÞ ¼ jckj2 ¼
T

εk − μ
: ð3Þ

Here, T is the dimensionless optical temperature, μ is the
optical chemical potential. The reservoir internal energy
can be written as

U ¼ MT þ μP: ð4Þ

One prominent feature we can find is that, for given
power P, the optical entropy S no longer varies monoton-
ically with the internal energy U. Consequently, the system
can reach the negative optical temperature regime [9,58].
From Eqs. (3), (4), we have plotted the phase diagram of the
reservoir with square lattice. As shown in Fig. 1(b), only
fðT; μÞjT < 0; μ > εMg (Rn) and fðT; μÞjT > 0; μ < ε1g
(Rp) can be visited, and the other regimes are forbidden
(Rf). This follows from the requirement jckj2 ≥ 0.
Moreover, the chemical potential is out of the band
spectrum of the system, i.e., μ is below (above) the lowest
(highest) energy level for positive (negative) temperature.
The positive and negative temperature regimes are anti-
symmetric with each other in the phase diagram when
neglecting the nonlinear effect. In the following, we focus
on the negative temperature regime and numerically check
that this antisymmetry is still approximately valid in the
weakly nonlinear regime (Fig. 2).
Transport coefficients in microcanonical ensemble—

Transport theory is normally formulated with open boun-
daries using grand canonical ensemble. Current is driven
by temperature or chemical potential bias between two
reservoirs of infinite size. Because of finite size of present
junction, it is convenient to utilize the microcanonical
setup. The transport coefficients can be extracted by
following the thermalization process of a microcanonical
system from given initial conditions, where the left and
right reservoirs are at their own thermodynamic equilibrium
with different chemical potential or temperature.
Using the theory of irreversible thermodynamics, we can

make connection between chemical potential (Δμ) and
temperature (ΔT) biases (affinities) with the corresponding
power (JP) and entropy (JS) currents (fluxes). The corre-
sponding transport matrix connecting affinities and fluxes
follows the Onsager symmetry

�
JP
JS

�
¼

�
K0 K1=T

K1=T K2=T2

�� Δμ
ΔT

�
: ð5Þ

Here, JP ¼ −ð∂ΔP=∂zÞ=2, JS ¼ −ð∂ΔS=∂zÞ=2, and ΔP ¼
PL − PR; ΔS ¼ SL − SR represent difference between
the macroscopic quantities of the left and right reservoirs.
Positive direction of the currents is chosen as from left to
right. The matrix elements K0, K1, and K2 depend on the
structure of the chain and the state of the whole system.
We can obtain the evolution equations of ΔP and ΔT by
eliminating Δμ and ΔS using the equilibrium thermody-
namic relations of the two reservoirs (see Sec. II of SM for
details [52]). For symmetric junctions with identical left
and right reservoirs, they read

τ0
∂

∂z

�ΔP
ΔT

�
¼ −

�
1 −κα
− α

lκ
Lþα2

l

��ΔP
ΔT

�
; ð6Þ

where we have defined a transport timescale τ0 ¼ κ=ð2GÞ.
The reservoir properties κ, αr, CP are the compression
coefficient, Seebeck coefficient, and the heat capacity at
constant power, respectively, with l ¼ CP=Tκ. They are
evaluated at the average temperature and chemical potential
[Eqs. (S33)–(S35)]. The effective Seebeck coefficient

FIG. 2. Dependence of transport coefficients on temperature
(T) for different nonlinear strengths χ at μ̄ ¼ 7 for the structure
shown in Fig. 1(a) with κ ¼ 1,M ¼ 19 × 19. Convergence of the
results with respect to reservoir sizeM is given in Sec. II-C of the
SM. (a) Conductance G, (b) Seebeck coefficient αc, (c) thermal
conductance GT , (d) Lorenz number L. The inset shows depend-
ence of L on chemical potential μ at T ¼ −1.06 and χ ¼ 0.2. The
black solid lines are theoretical results from the Landauer
formalism. Results at positive temperature with χ ¼ 0.4 are
shown with empty squares. The sign of T and G at positive T
are reversed to show in the figure. They are very close to those at
corresponding negative temperature (filled squares).
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α ¼ αr − αc characterizes the difference between the res-
ervoir itself αr and the whole junction αc.
General solutions of the above equations are

ΔPðzÞ¼
�
Ωþδ−1

2Ω
ΔP0þ

ακ

2Ω
ΔT0

�

×e−
z
τ>

�
1þðΩ−δþ1ÞΔP0−ακΔT0

ðΩþδ−1ÞΔP0þακΔT0

e−
z
τ<

�
; ð7Þ

ΔTðzÞ¼
�
Ω−δþ1

2Ω
ΔT0þ

α

2lκΩ
ΔP0

�

×e−
z
τ>

�
1þ lκðΩþδ−1ÞΔT0−αΔP0

lκðΩ−δþ1ÞΔT0þαΔP0

e−
z
τ<

�
; ð8Þ

where δ ¼ ½1þ ðLþ α2Þ=l�=2 and Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − L=l

p
form

the eigenvalues of the evolutionary matrix λ� ¼ δ�Ω.
The fast and slow timescales τ< ¼ τ0=2Ω and τ> ¼
τ0=ðδ −ΩÞ indicate the evolution of the system in two
stages (Fig. S3): (1) a saturation process is characterized by
the timescale τ<, which dominates the initial short time
period. This process leads to an initial increase in the
absolute value of the particle number deviation until it
reaches a maximum. (2) A decay process is characterized
by the timescale τ>, which dominates the longer period of
time after saturation. The three transport coefficients G, αc,
and L (or GT) can then be acquired by fitting the numerical
results obtained from solving the discrete nonlinear
Schrödinger equation. Details of the fitting procedure
can be found in Sec. II-B of the SM [52].
Photonic Wiedemann-Franz law—Figure 2 shows tem-

perature dependence of the transport coefficients for a
symmetric junction with square-lattice reservoirs. We
notice that, in the negative temperature regime, conduct-
ance G < 0, indicating that the power is transferred from
the low to the high chemical potential reservoir when
ΔT ¼ 0. This seemingly surprising result does not violate
the second law of thermodynamics. Considering two
subsystems that can exchange particles with each other
under constant temperature, the second law of thermody-
namics requires that the entropy does not decrease during
the particle exchange ΔS ¼ ðμL − μRÞΔP=T > 0, where
ΔP is the power lost from the left reservoir or gained from
the right reservoir. When T > 0, the power is transferred
from high to low chemical potential. However, in the
opposite case of T < 0, the direction is reversed, meaning
G < 0. Similar argument applies to the case of thermal
transport in the presence of temperature bias ΔS ¼
−ðTL

−1 − TR
−1ÞΔQ > 0, with ΔQ heat transferred out of

the left reservoir. This indicates that the direction of thermal
current is from high to low temperature, thus GT > 0.
Figure 2(a) shows an approximated linear T dependence

of G for all the nonlinear parameters considered. This can
be understood qualitatively from the Landauer formalism
(Sec. III of SM [52]).

The conductance can be approximated as

G ¼
Z

dε
2π

T ðεÞ T
ðε − μÞ2; ð9Þ

indicatingG ∝ T for temperature independent transmission
T ðεÞ. Moreover, the optical modes contribute to the
transport with a weighting factor inversely proportional
to the square of the energy deviation from the chemical
potential.
Temperature dependence of the Seebeck coefficient αc is

shown in Fig. 2(b). It can be well fitted by an inverse T
dependence αc ∝ −1=T predicted by the Landauer model.
The little effect of nonlinear interaction on αc can also be
captured by the Landauer result. In fact, αc can bewritten as
αc ¼ K1=ðK0TÞ. K0 and K1 have similar dependence on
the nonlinear interaction, they cancel with each other in αc.
Similar to conductance, the thermal conductanceGT also

increases with nonlinearity [Fig. 2(c)]. From the Landauer
formalism, we get

GT ¼
Z

dε
2π

T ðεÞ − Tα2cG: ð10Þ

This gives a temperature independent GT . Similar to G, the
temperature dependence in the numerical results is due to
nonlinear interaction. The second term on the right side of
Eq. (10) represents correction to the thermal conductance
due to Seebeck coefficient. Here, its magnitude is compa-
rable to the first term. This is in contrast to the case of
electrons in condensed matter system, where the thermo-
electric correction is often negligible.
The variation of L with temperature and chemical

potential is shown in Fig. 2(d), and is once again captured
by Landauer’s theory. It can be found that the Lorenz
number is more sensitive to temperature than the chemical
potential (inset). In the Landauer picture, GT ∝ T0 together
with G ∝ T leads to L ∝ 1=T2, which is the photonic W-F
law. The decrease in L with decreasing temperature comes
from the increase in jGj. Similar to αc, we also observe a
rather weak dependence on the strength of nonlinear
interaction. Thus, the jTj−2 dependence of the Lorenz
number is not due to nonlinear interaction. Rather, its
origin is similar to that in coherent mescoscopic conduc-
tors, which can be fully accounted by the single particle
Landauer formalism. Similar results are obtained for
reservoirs with honeycomb lattices (SM, Sec. IV [52]).
Rectification in an asymmetric junction—While the

transport coefficients are well-defined only in the linear
regime, the numerical solution of Eq. (1) applies equally in
nonequilibrium situation. Figure 3 depicts results obtained
for an asymmetric junction with square and honeycomb
reservoirs at left and right, respectively [Fig. 3(c), inset];
see also Sec. V of SM [52]. We have applied initial
chemical potential (jΔμj ¼ 10) or temperature (jΔTj¼5)
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bias beyond linear regime. The difference in power and
thermal current at positive and negative bias ðΔJP;ΔJQÞ
during relaxation is shown for nonlinear coefficients
χ ¼ 0.7 (red) and 0.2 (blue). The different behavior for
the two bias direction indicates rectification effect in both
power and thermal current, which grows with increasing χ.
For χ ¼ 0.2, the current difference grows to a maximum
and decays slowly afterward. It takes longer time for the
nonlinear effect to build up and for the system to relax to
equilibrium, compared to the case of χ ¼ 0.7. The overall
results are consistent with the general theory, which
predicts rectification behavior in asymmetric junction with
nonlinear interactions [59–62]. The maximum rectification
ratio (defined as current difference over average) is ∼30%,
consistent with result from simulation using grand canoni-
cal ensemble at steady state using Langevin baths [63]. In
Fig. 3, both lattice type and reservoir size are different. We
have checked that rectification can still be observed when
there is only one type of asymmetry, although the magni-
tude changes (Sec. V of SM [52]).
In conclusion, based on a theory in the microcanonical

ensemble, we found a photonic Wiedemann-Franz law,
with the Lorenz number L ∝ 1=T2, in coupled optical
power and thermal transport of nonlinear waveguide arrays.
Moreover, asymmetric relaxation behavior is found in a
junction with square and honeycomb lattices, indicating
rectification behavior in both power and thermal transport.
Our findings are of great importance for the study of

fundamental nonequilibrium thermodynamic processes
utilizing artificial optical waveguide arrays, where
coupled power and thermal transport is ubiquitous.
Moreover, since the internal energy represents longi-
tudinal momentum flow of optical modes in the wave-
guides, it would be interesting to explore these theoretical
results in designing novel devices to manipulate optical
waves. Estimation of the parameters in realistic optical
systems is given in Sec. VI of SM [52].

Note added—During the submission of this work, we
became aware of a related work [64], where a similar
relation between GT and G is derived.
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