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The effect of quenched disorder in a many-body system is experimentally investigated in a controlled
fashion. It is done by measuring the phase synchronization (i.e., mutual coherence) of 400 coupled lasers as
a function of tunable disorder and coupling strengths. The results reveal that correlated disorder has a
nontrivial effect on the decrease of phase synchronization, which depends on the ratio of the disorder
correlation length over the average number of synchronized lasers. The experimental results are supported
by numerical simulations and analytic derivations.
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Introduction—Many different quantum and classical
physical systems can be described by the framework of
many-body interacting oscillators. Examples include trans-
verse-field spin models, wherein spins rotating around a
local magnetic field can synchronize to reach finite mag-
netization even in the presence of a spatially varying
magnetic field [1–5]. Synchronization of classical phase
oscillators has been studied for decades through the
Kuramoto model [6], and is manifested in many different
systems such as arrays of Josephson junctions [7,8],
coupled laser arrays [9,10], and even human networks [11].
In all of these, disorder plays a major role in synchroniza-
tion. There are cases where disorder leads to synchroniza-
tion [12,13], but in general it acts as an obstacle, preventing
the interaction between the individual members of the
ensemble so they cannot synchronize.
While many theoretical investigations of the effects of

disorder on synchronization have been performed [6,14–17],
it is difficult to verify the results experimentally because
excessively high control and accuracy are needed. Several
systems with robustness to disorder were recently reported
[18–23], but with limited ability to tune the disorder and
quantify their robustness.
In this work, we resort to an array of 400 lasers with

nearest-neighbor coupling and well-controlled quenched
(time-independent) disorder to obtain a tunable system for
investigating the effects of disorder on synchronization
(locking) of their optical phase. The disorder is introduced
in the form of frequency detuning, where the resonant
frequency of each individual laser is shifted. By precisely
controlling the magnitude of the disorder, we show how it
gradually diminishes the ability of the lasers to synchron-
ize. By varying spatial properties of the disorder, we
demonstrate how its effects depend on a nontrivial interplay
between the scales of the problem, namely, the correlation
length of the disorder and the average number of synchron-
ized lasers, in good agreement with our numerical and
theoretical derivations.

Our experimental system of coupled laser arrays can be
readily extended to investigate the effects of controlled
disorder on topological states [19,24,25], non-Hermitian
dynamics [26,27], geometric frustration [28], spin simu-
lators, and physical solvers for complex problems [29–32].
Experimental system—Our experimental system, sche-

matically shown in Fig. 1 and described in detail in [33]
is comprised of a digital degenerate cavity laser (DDCL)
[34–36]. It includes an intracavity 4f telescope, a 98%
reflectivity output coupler, a 3 mm thick ND:YVO4 gain
medium lasing at wavelength λ ¼ 1.06 μm, a reflective

FIG. 1. Experimental system. A modified digital degenerate
cavity laser [34–36] with an intracavity SLM that defines 400
lasers (20 × 20 square lattice) with a normally distributed random
frequency detuning pattern having standard deviation τcΩrms
and correlation length ξ. The tunable coupling arrangement
(surrounded by the dashed lines) introduces Talbot coupling
[37,38] between nearest neighbor lasers whose strength can be
continuously tuned by rotating the λ=2 wave plate. The insets
show representative far-field (left) and near-field (right) intensity
distributions for zero disorder strength (τcΩrms ¼ 0). The four
sharp diffraction FF peaks indicate near-perfect phase synchro-
nization with π phase difference between neighbors due to
negative coupling.
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spatial light modulator (SLM) with pixel size of 8 ¼ μm,
and a tunable coupling arrangement. The gain medium has a
fluorescence lifetime of τf ≈ 100 μs, and is end- pumped by
a 808 nm diode laser with a pulse duration of 500 μs at 4 Hz
repetition rate. The intracavity SLM forms a digital ampli-
tude and phase mask, to form 400 independent lasers in a
20 × 20 square array with spacing between adjacent lasers of
dlat ¼ 300 μm, (see NF inset in Fig. 1) and to precisely
control the frequency detuning between the lasers. By
changing the phase retardation of each SLM pixel, we
locally vary the effective cavity length with a precision of
ðλ=256Þ and thereby detune the resonant frequency of each
laser with a precision of τcΔΩ ¼ ð2π=256Þ rad, where
τc ¼ ð2l=cÞ ≈ 13.3 ns is the cavity round-trip time. The
200 μm diameter of each site in the array ensures a single
Gaussian spatial mode for each laser.
Intracavity polarizing beam splitter (PBS) and λ=2-

waveplate deflect a controllable amount of the light into
a second branch of the cavity [39–41] where the lasers
are Talbot coupled [37,38]. This provides a tunable
coupling strength of Kmaxsin2ð2θÞ between nearest neigh-
bor lasers [33], where θ is the rotation angle of the λ=2
waveplate and Kmax ≈ −0.45 is the calculated full Talbot
coupling strength [37,38].
In each experimental realization, the SLM was con-

trolled to obtain a normally distributed random frequency
detuning pattern with a standard deviation Ωrms and a
Gaussian spatial correlation function with a waist that
we refer to as ξ, the correlation length of the frequency
detuning pattern. Hence, the correlation of the frequency
detuning between the lasers in sites ði; jÞ and ði0; j0Þ is

hΩijΩi0j0 i ¼ ðΩrmsÞ2e−
ði−i0Þ2þðj−j0Þ2

ξ2 : ð1Þ

Equation (1) indicates that as ξ increases, the detunings
of neighboring lasers are more likely to be similar. To
provide near-perfect starting conditions for our experiments
we first apply intracavity adaptive optics [33] to reduce
aberrations and uncontrolled frequency detuning (see
below and Supplemental Material [42], Fig. S2).
For each realization, we pump the laser and measure the

resulting steady state near field (NF) and far field (FF)
intensity distributions. The measured distributions are aver-
aged over 50 random realizations for each value of τcΩrms
and ξ. The inital pump power was P ¼ 19.8W ≈ 4Pth, and
increased as required to compensate for the increased losses
due to the introduced disorder (see Fig. S1 in [42]). The FF
intensity distribution (IFF) is proportional to the Fourier
transform of the coherence function of the electric field
[43,44]. We thus use the average FF inverse participation
ratio (IPR) as the synchronization order parameter:

IPR ¼
R R

dxdyI2FF
ðR R dxdyIFFÞ2 : ð2Þ

The IPR is a common measure of localization in dis-
tributions and is correlated with the average number of
synchronized (i.e., mutually coherent) lasers (see Fig. S4
in [42]) [33,44–46]. For an array of lasers, each with a
single Gaussian mode, and with a mutual coherence
length lc, IPR ∝ l2c ≡ Ac. We interpret Ac as a coherence
area and N ¼ Ac=d2lat as the average number of synchron-
ized (mutually coherent) lasers [42]. The proportionality
constants are determined by the geometry of the system,
and remain constant throughout the experiments. In earlier
investigations we found that the results of the IPR measure-
ments of the laser array coherence were equivalent to
interferometric phase measurements or spectral frequency
measurements, while being simpler and more reliable for
large and disordered arrays [40,47,48].
Results, uncorrelated disorder—Figure 2 shows the

experimental normalized FF IPR as a function of the
applied disorder strength (normalized to the coupling
strength) τcΩrms=jKj, for uncorrelated (ξ ¼ 0) normally
distributed frequency detuning patterns. As evident,
increasing the disorder leads to a monotonic decrease
in the IPR and deterioration of synchronization,
as manifested by the significant broadening of the FF
intensity peaks, shown in the insets (see also Fig. S4 in
[42]). Results for different jKj agree well with each other,
with the IPR dropping to half for τcΩrms=jKj ≈ 0.81ð7Þ,
attesting that synchronization is determined by the
ratio τcΩrms=jKj.
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FIG. 2. Experimental normalized FF IPR as a function of the
ratio of disorder over the coupling strength, τcΩrms=jKj for two
coupling values. Insets show the average FF intensity distribution
at τcΩrms=jKj ¼ 0 and 2.48 for coupling strength jKj ¼ 0.25. Top
right inset: Average number of synchronized lasers, N ≡ Ac=d2lat,
as a function of disorder. Dashed curves denote best fits to
N ¼ fa=½ðτcΩrmsÞb þ c�g, and the dotted vertical line denotes the
estimated value of τcΩrms;uncontrolled ¼ 0.079 rad.
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The top right inset in Fig. 2 shows that the average
number of synchronized lasers (determined from the FF
intensity distribution [33,44]) is also reduced monotoni-
cally with τcΩrms. Note that N differs significantly for the
two different coupling strengths for small τcΩrms due to the
uncontrolled disorder in our system.
Fitting the data from Fig. 2 top right inset to

N ¼ fa=½ðτcΩrmsÞb þ c�g we obtain b ¼ 2.3ð1Þ, 2.0(1)
for jKj ¼ 0.25, 0.12, respectively. These results are in
good agreement with the theoretical value of b ¼ 2
in Eq. (5) which we consider in the last section of
this Letter. We identify c as a manifestation of our un-
controlled disorder ðτcΩrms;uncontrolledÞb ¼ c, to estimate
τcΩrms;uncontrolled ≈ 0.079ð4Þ rad.
Results, correlated disorder—We now consider the

effects of correlated disorder (ξ > 0) on synchronization.
The results for jKj ¼ 0.25 are presented in Figs. 3–5 (see
additional results in Figs. S5–S7 in [42]). Figure 3 shows
the experimental normalized IPR of the measured FF
intensity distribution as a function of τcΩrms and ξ. All
measured IPR values were normalized such that IPR ¼ 1, 0
are the maximal and minimal values measured across
all experiments, respectively. For all values of ξ, the IPR
monotonically decreases as τcΩrms is increased, as
expected. However, the IPR dependence on ξ is nontrivial
and nonmonotonic.
Figure 4 shows the experimental normalized and calcu-

lated IPR as a function of τcΩrms for uncorrelated disorder
(ξ ¼ 0) and correlated disorder with ξ ¼ 8. For weak

disorder τcΩrms < 0.31 rad, the IPR is lower (worse syn-
chronization) for the correlated disorder, while for strong
disorder, the opposite is true. Numerical simulation of the
full laser rate equations [49] (see procedure in [42]) are in
good agreement with the experimental results and validate
the nonmonotonic dependence on ξ.
This nonmonotonicity is again seen in Fig. 5 that

shows the experimental and calculated normalized IPR
as a function of ξ for different values of τcΩrms. In the
case of strong disorder (purple), the IPR monotonically
increases with ξ. However, for weak disorders the depend-
ence on ξ is nonmonotonic, and the IPR reaches a minimum
at an intermediate value of ξ that decreases with the strength
of the disorder. It is apparent that there is a good agreement
between the experimental and simulation results.
Analysis and discussion—To elucidate our experimental

and simulation results, we consider a toy model that is
based on the Kuramoto model [6], which can describe the
dynamics of coupled lasers when their intensities are
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FIG. 4. Experimental and numerically simulated normalized FF
IPR as a function of disorder τcΩrms for uncorrelated disorder
ξ ¼ 0 (black) and for correlated disorder with ξ ¼ 8 (green).
Inset, left: Representative realizations of disorder vectors with the
same length (400 sites) and τcΩrms for ξ ¼ 0 and ξ ¼ 8. Inset,
right: Examples of synchronized lasers in LRE simulations for
uncorrelated disorder (ξ ¼ 0) with τcΩrms ¼ 0.15; 0.62 rad. Each
pixel represents the phase of the corresponding laser in the array.
Additional examples are provided in Fig. S3 in [42].
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FIG. 5. Experimental and numerically simulated normalized
FF IPR as a function of correlation length ξ for different values
of disorder, τcΩrms ¼ 0.12; 0.23; 0.36; 0.62 rad (blue, orange,
yellow, and purple, respectively). Dashed lines show the corre-
sponding IPR values for ξ ¼ 0 for reference.

FIG. 3. Measured FF IPR as a function of the disorder
strength τcΩrms and its correlation length ξ for jKj ¼ 0.25.
The black dashed curve denotes IPR ¼ 0.4, indicating the
nonmonotonic dependence on ξ. The white dotted line is along
ξ ¼ 8 (detailed in Fig. 4).
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identical and high above threshold [28,50]. Theoretical
studies of models with nearest neighbor coupling have
shown that for any finite frequency detuning Ωi (taking
τc ¼ 1), the oscillators synchronize in local clusters, where
the maximal number of synchronized oscillators in a single
cluster is bounded [6,51,52].
Specifically, we consider a one-dimensional chain of

Kuramoto oscillators with bidirectional nearest neighbor
coupling as a toy model of our system. We chose to work
with a one-dimensional theoretical system for which
analytical solutions exist (rather than the two-dimensional
system in our experiments and simulations where analytical
solutions do not exist). Although it is not obvious that
results from a one-dimensional system can be applied to a
two-dimensional one, theoretical studies that suggest that
the conditions for existence of the phase locked state of the
system and its properties are similar for one- and two-
dimensional systems [51,52]. We found that our limited toy
model provides some insight into the results of our two-
dimensional system, and shows similar qualitative behavior
to that which we have observed in experiments.
For a one-dimensional chain of oscillators with nearest

neighbor coupling, the necessary condition for synchroni-
zation of N oscillators is that the maximal accumulated
detuning along the N oscillators must be smaller than the
coupling strength K between two neighbors [51]:

max
1≤j≤N

jXjj ≤ K ð3Þ

with Xj being the accumulated detuning

Xj ¼
Xj
i¼1

Ωi −
1

N

 XN
i¼1

Ωi

!
: ð4Þ

Kc, the critical required coupling for synchronization of
N oscillators is thus simply max jXjj. When Ωj has a
normal distribution (i.e., for uncorrelated disorder), Eq. (3)
describes the maximal displacement of a random walker,
max jXjj ∝ Ωrms

ffiffiffiffi
N

p
, such that the synchronized cluster

size is

N ∝
K2

Ω2
rms

: ð5Þ

Equation (5) agrees well with the results presented in Fig. 2,
as well as the fit to the experimental data.
We now extend our model for the case of correlated

quenched disorder. Figure 6 (upper left) shows
hmax jXjji ¼ Kc numerically calculated from Eq. (4) as
a function of the synchronized cluster size N for Gaussian
detuning disorder of Ωrms ¼ 1 and several correlation
lengths ξ (the brackets indicate an average over different
disorder realizations). For small synchronized cluster
sizes Kc decreases with ξ, while for larger cluster sizes,

Kc increases with ξ. Notably, the crossing point between
the two trends is roughly at N ∼ ξ.
The result of Eq. (4) in the case of correlated disorder can

be approximated analytically (see derivation in [42]) as

hjXjji2 ≈Ω2
rms

πξL
8

1

ξffiffiffiffi
2π

p
�
e
−2L2

ξ2 − 1
�
þ Lerf

� ffiffi
2

p
L

ξ

�

×
XL
i¼0

�
erf

�
j − i
ξ

�
þ 1

2
e
−ðj−iÞ2

ξ2 −
j
N

�
erf

�
N − i
ξ

�

þ 1

2
e
−ðN−iÞ2

ξ2

�
þ
�
1 −

j
N

��
erf

�
i
ξ

�
−
1

2
e
−i2

ξ2

��
2

:

ð6Þ

The analytic approximations of Eq. (6) shown in Fig. 6
(upper right) are in good agreement with the exact
numerical integration of Eq. (4) (Fig. 6 upper left) and
validate the nonmonotonic dependence of Kc on ξ and the
cluster size.
Analyzing the limiting behavior of Eq. (6) reveals

two distinct regimes. In one regime where N ≫ ξ,
maxhjXjji →

ffiffiffiffiffiffi
ξN

p
, equivalent to the displacement of a

random walker with a step size ξ > 1. In the other regime,
N ≪ ξ, maxhjXjji → ðN2=ξÞ, which can also be derived
directly from Eq. (3) by treating the applied disorder as a
long wavelength perturbation Ωi ¼ sinði=ξÞ. A log-log
linear fit to the numerically evaluated hmax jXjji as a
function of ξ is shown in Fig. 6 (bottom) for N ¼ 3

and N ¼ 100. Both regimes are well fitted by y ¼ axb

with b ¼ −1.04ð6Þ, 0.47(4) for the ξ ≫ N, ξ ≪ N regimes,
in good agreement with the theoretical limiting behavior of
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FIG. 6. The maximal accumulated detuning maxhjXjji as a
function of the number of oscillators N and disorder correlation
length ξ. Upper left: Numerical integration of Eq. (4) averaged
over 100 random realizations. The inset shows a magnified view
for low N values. Upper right: Corresponding analytical evalu-
ation using Eq. (6). Bottom: Log-log plot of the numerical data as
a function of ξ for N ¼ 100 (red) and N ¼ 3 (blue) N. Linear fits
to the colored-in points (dashed lines) yield good agreement of
the ξ scaling to the limiting analytical approximations.

PHYSICAL REVIEW LETTERS 133, 113803 (2024)

113803-4



b ¼ −1, 0.5, respectively. The results from the analytical
toy model reveal a behavior which is qualitatively similar
to the nonmonotonic relationship between the disorder
parameters τcΩrms; ξ and the synchronization of the array
shown in Figs. 3–5.
Conclusions—We experimentally investigated the effects

of quenched disorder on the synchronization of coupled
oscillators by means of frequency detuning disorder in
coupled laser arrays. Our results demonstrate how
increased disorder results in a gradual deterioration in
synchronization that depends on the ratio of the coupling
strength over the disorder strength. Our experimental
results are supported by both numerical simulations and
an analytic toy model. In addition, we found that the
correlated disorder can either improve or degrade synchro-
nization compared to uncorrelated disorder, depending on
the ratio of its correlation length ξ and the average number
of synchronized lasers N: For ξ ≪ N, N ∝ ðK2=ξ2Ω2

rmsÞ
revealing the behavior of a correlated random walker. In
contrast, disorder with ξ ≫ N is effectively a low frequency
perturbation along the cluster and thus causes a smaller
decay in synchronization to yield N ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðξK=ΩrmsÞ
p

.
Our results provide insight into the effects and man-

agement of disorder that can be exploited to improve
systems where disorder has an inherent correlation time
or length (e.g., spin and photonic systems). By control-
ling the applied disorder, it should be possible to quantify
protection against disorder by means of topological
effects [18–23], and study the effects of disorder on spin
simulators and solvers which are based on coupled lasers
or parametric oscillators [29–31].
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