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Single-photon nonlinearity, namely, the change in the response of the system as the result of the
interaction with a single photon, is generally considered an inherent property of a single quantum emitter.
Although the dependence on the number of emitters is well understood for the case of two-level systems,
deterministic operations such as single-photon switching or photon-atom gates inherently require more
complex level structures. Here, we theoretically consider single-photon switching in ensembles of emitters
with a Λ-level scheme and show that the switching efficiency vanishes with the number of emitters.
Interestingly, the mechanism behind this behavior is the quantum Zeno effect, manifested in a slowdown of
the photon-controlled dynamics of the atomic ground states.
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Nonlinear behavior at the single-quantum level is a
fundamental physical phenomenon that is also at the heart
of quantum technology applications. In optics, the practical
absence of photon-photon interactions at the single-photon
level in a vacuum makes it necessary to rely on coupling
with quantum emitters in order to attain single-photon
nonlinearity. The fact that strong light-matter coupling can
be collectively enhanced in ensembles [1–6], makes it
tempting to try to enhance the nonlinearity by exploiting
multiple quantum emitters. However, coupling to multiple
emitters has been found to reduce the nonlinearity rather
than enhance it in certain cases, such as ensembles of two-
level atoms interacting with a single optical mode. There,
the central mechanism behind the nonlinearity, the photon
blockade, was shown to be suppressed with the number of
atoms [7,8]. This is unfortunate since obtaining high
collective cooperativity C1Nat ≫ 1 with Nat > 1 is typi-
cally easier than attaining large single-atom cooperativity
C1 ≫ 1, which typically requires ultrahigh-quality reso-
nators with microscopic cross sections.
Here, we wish to explore the possibility of enhancing a

different kind of nonlinear behaviour, one that can support
single-photon switching and deterministic photon-atom
gates. Such operations cannot be performed by two-level
atoms since they do not have any memory mechanism, as
the system returns to the same ground state regardless of
how many photons were scattered. This makes this type of
nonlinearity similar to χð2Þ or Kerr, which is insufficient for
photon-atom logic gates (due to time-bandwidth conflict)
[9]. Switching, namely, a permanent change in the system

after interaction with a single photon, requires at least a
three-level Λ configuration with two ground states which
resolves the time-bandwidth conflict [10]. Since ensembles
of such three-level atoms can “count” the number of photons
they interacted with, it is interesting to explore if this type of
switching nonlinearity also vanishes with the number of
emitters, and if so—what is the underlying mechanism. We
do so by considering an intriguing “riddle” that involves
multiple atoms in an optical cavity. Specifically, we consider
atoms with the two ground levels j�i and the excited state
j0i in a single-sided cavity. The cavity equally enhances the
twomodes of the “legs” of theΛ system (here taken to be σþ
and σ− polarizations), as depicted in Fig. 1(a). This
configuration can be used to implement a single-photon
memory [11] and photon-atom gates such the entanglingffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p
gate [12] and the SWAP gate [13,14], which maps

a single photon qubit into an atomic qubit and vice versa.We
wish to explore how this nonlinearity changes with the
number of atoms Nat while keeping the collective cooper-
ativity constant: C1Nat ¼ const ≫ 1.
The riddle we consider is a three-step protocol, depicted

in Fig. 2: (a) By shining multiple V-polarized photons, all

}(b)(a)

FIG. 1. (a) Illustration of the two atomic transitions selectively
coupled to σþ- and σ− circularly polarized photons. (b) One-sided
cavity (shown here with only the left mirror being partially
transmissive) with an array of Λ atoms, coupled to right- and left-
circularly polarized photons.*Contact author: poddubny@weizmann.ac.il
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the atoms in the cavity are eventually pumped to the H
superposition (dark) state:

jψ ini ¼
jþ1i þ j−1iffiffiffi

2
p ⊗

jþ2i þ j−2iffiffiffi
2

p ⊗ …
jþNi þ j−Niffiffiffi

2
p :

ð1Þ

The fact that Eq. (1) is an equilibrium state will be
rigorously proved below. It can be also understood intui-
tively by noticing that this state does not interact with V
photons due to the parity selection rules. (b) A single σþ
polarized photon is incident on the cavity. The V polari-
zation component interacts with a bare cavity, while the H
polarization interacts with a cavity strongly coupled to
multiple atoms. The π phase shift associated with this
condition flips the polarization of the photon to σ− as it
reflects from the cavity. (c) Clearly, the state of the atoms
has now been perturbed, and cannot be assumed to remain
the perfect dark state for V-polarized photons. We aim to
verify this expectation by sending again many V-polarized
photons, and asking, how many of these photons will return
as H, and not stay V as they would have, had we not sent
the σþ photon in step (b)?.
We believe that this problem is not trivial. It is not

immediately obvious how to apply intuitions derived from
the Kerr-type nonlinearity with two-level atoms [7,8] to the
memory-type nonlinearity (see also [15]). One could
expect, for example, that since the dark state of the
ensemble was modified by reflecting one photon, it will
also need to reflect one photon in total before going back to
its original state. This would amount to a strong single-
photon nonlinearity. Another expectation is that this
reflection process will be faster when the ensemble has
more atoms, as in the case of Dicke superradiance [23]. We
will show that both these expectations are wrong. The
average total number of reflected H photons NH

tot is always

below 0.5 (being the limit of a perfect SWAP gate with a
single atom), and is suppressed by a factor of 1=Nat for a
large number of atoms Nat ≫ 1; moreover, the dynamics
are slowed down and more V photons are required to reach
this value. This leads to the intriguing question: “where
did the angular momentum of the σþ photon (reflected
as σ−) go?”
Quantum Zeno effect—We can gain some intuition by

considering another well-known scenario that involves
repeated measurements: the quantum Zeno effect (QZE)
[24,25]. In the QZE, frequent quantum nondemolition
(QND) measurements are applied at an axis that is identical
to the initial state of the system. If the measurements are
frequent enough so that the system can barely evolve or be
perturbed between them, and assuming (as is usually the
case) that for slight perturbations, the overlap with the
original state drops quadratically, then the system is most
likely to continuously collapse to the original state. This
effect can be used either to “freeze” the evolution (hence
the name Zeno), or to adiabatically “drag” the state by
gradually changing the axis of the QND measurement. As
an example, consider a vertically polarized photon going
through a series ofN cubic polarizing beam splitters, which
gradually rotate by 90°=N each until the last one is
perpendicular to the first [inset in Fig. 2(c)]. The probability
that each beamsplitter will reflect the photon is proportional
to 1=N2, and the overall scattering probability goes down
like 1=N. The intriguing element here is that seemingly
nothing is happening: the photon is never scattered, and yet
its polarization is rotated. Here as well, we may ask “where
did the momentum go?” The answer is that the lack of
scattering (quantum jumps) allows coherent evolution to
the new state, and the backaction is also transferred
coherently to the environment, which is usually not part
of the model. The force applied to the beam splitters
accumulates coherently, and the momentum is transferred
unnoticed through the holders of the beam splitters to the
optical table and Earth. This also solves our problem: the
backaction [due to the momentum stored in the atomic
ensemble in stage (b)] causes the V-polarized photons at
stage (c) to become very slightly elliptical. If we analyze
these photons by a polarizing beam splitter, we get a similar
situation: even though, for Nat ≫ 1, none of the photons is
reflected to the H port, a force is applied on that beam
splitter until the momentum is coherently transferred from
the atoms to Earth, and the atoms return to their initial dark
state (a). With that intuition in mind, we now present a more
rigorous treatment.
Model and theoretical framework—Photon interaction

with multilevel atoms, including Λ atoms, can be treated
directly using the generalized input-output formalism [26].
However, this brute-force technique is relatively computa-
tionally expensive because of the large Hilbert space size. It
is appealing to develop analytical tools tailored to Λ-atom
arrays. We draw inspiration from the scattering matrix

(a) (b)) (c)c)

?

FIG. 2. Evolution of the collective spin of the Λ-atoms
ensemble, driven by photons: (a) Spin is oriented along x by a
strong V-polarized excitation. (b) One σþ photon slightly rotates
the spin towards z. (c) The spin returns towards x after more V
photons are sent. The question is how many of these photons are
reflected with H polarization. External magnetic field Bky can be
also applied to rotate the spin. Inset in (c) illustrates an analogy
with the quantum Zeno effect and nondemolition measurements:
adiabatic photon polarization conversion by N gradually rotating
beam splitters.
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approaches for two-level atoms [27–29]. The photon
scattering calculations for the Λ-atoms turn out, however,
to be more involved because of the 2N degeneracy of the
ground states. This may explain why despite the consid-
erable recent progress, theoretical efforts still primarily
focus on relatively simple states of the Λ-atom ensembles
[30–34], except for only a few recent studies of squeezing
[35,36] and superradiant bursts [37]. Another notable
exception is Ref. [38], where multiple photon scattering
problem onNat ¼ 1 atom has been solved using the Green’s
function approach and thus generalizing Refs. [27–29]. For
Nat > 1 atoms, the multiple scattering problem remains
unsolved.
In this Letter, we introduce a rigorous theoretical

approach for calculating the consecutive scattering of
multiple photons on Λ-atom ensembles. This approach is
naturally suited to the description of the photon switching
protocols where the photons are incident upon the system
one by one rather than simultaneously. In this simplified
case, we obtain explicit analytical results for the photon
scattering amplitudes.
We assume that the linewidth of the atoms is much

smaller than the cavity linewidth. In this case, theMarkovian
approximation is valid and the photonic degrees of
freedom can be traced out [26]. We introduce the fol-
lowing effective Hamiltonian Ĥ ¼ ω0

PNat
n¼1 j0; nih0; njþP

ν¼�
PNat

m;n¼1 σ
†
ν;nσν;mDnm. Here, ω0 is the resonance

frequency of the atomic transitions, and σ†ν;n are the
corresponding raising operators. Since each of theNat atoms
has two ground states j�; ni and a single excited state
j0; ni, the nonzero matrix elements are h0; njσ†þ;njþ; ni ¼
h0; njσ†−;nj−; ni ¼ 1. The matrix Dnm is proportional to the
Green’s function that describes a photon emitted at atom m
and reabsorbed at atom n.We focus on the purely dissipative
coupling between the atoms, Dnm ¼ −iγ1D=2. This corre-
sponds to either atoms at distances smaller than the light
wavelength λ but still far enough so that short-range dipole-
dipole interactions could be ignored. It is also possible to put
the atoms further apart at different antinodes of the standing
wave, which can be now also realized experimentally
[39–42]. The Hamiltonian reduces to

Ĥ ¼ ω0

XNat

n¼1

j0; nih0; nj − i

�
γ1D
2

þ γ

�X
ν¼�

σtot;†ν σtotν : ð2Þ

Here, just like for two-level atomensembles described by the
celebrated Dicke model [23,43], the collective inter-
action with photons involves only the total spin operators
σtotν ¼ PNat

n¼1 σν;n, with ν ¼ þ or−. The parameter γ1D is the
radiative decay rate into the cavity mode and the phenom-
enological decay rate γ accounts for emission into nonreso-
nant photon modes and other decay processes. A more
general Hamiltonian, including local disorder and does not
conserve total spin, is analyzed in [15].

We are interested in the weak excitation limit, when the
array is illuminated by photons one by one and is never
doubly excited. The optical transitions will then occur only
between the 2N ground states j�; ni and the N2N−1 single-

excited states jψ ðμÞ
1 i, where exactly one atom is excited to

j0; ni. We also introduce the Green’s function

GðωÞ ¼ iγ1D
X
μμ0

jψ ðμÞ
1 i

�
1

H1 − 1̂ω

�
μμ0
hψ ðμ0Þ

1 j; ð3Þ

where ½H1�μμ0 ≡ hψ ðμÞ
1 jHjψ ðμ0Þ

1 i. The calculation, detailed in
[15], yields the state of the atomic ensemble after scattering
the photon:

jψ scat;ν→ν0 i ¼ ½δν;ν0 þ σtotν0 GðωÞσtot;†ν �jψgroundi; ð4Þ

where jψgroundi is the state before the scattering and
ν; ν0 are incident and scattered photon polarizations. The
first term describes a photon reflected directly from
the left cavity mirror, without interacting with atoms,
while the second term involves photon interaction with
the single-excited states. The corresponding photon re-
flection coefficient is given by the expectation value
Rν→ν0 ≡ hψ scat;ν→ν0 jψ scat;ν→ν0 i. The atomic state transforma-
tion Eq. (4) is unitary for γ ¼ 0:

P
ν0 Rν→ν0 ¼ 1. In order to

obtain the total number of reflected photons NH
tot after

consecutive interaction with NV > 1 V photons we apply
Eq. (4) iteratively as detailed in [15].
Spin dynamics and QZE—By considering multiple

V-polarized photons, we have verified that the state
Eq. (1) is indeed the equilibrium state of ensemble after
step (a) of the protocol in Fig. 2, see also [15].
Next, we discuss the steps in Figs. 2(b) and 2(c). We

introduce a (pseudo)spin-1=2 sðjÞ operator acting in the
space spanned by the two ground states of the atom, e.g.,

sðjÞz j�i ¼ �j�i=2. Because of the symmetry of the prob-
lem, incoming photons are coupled only to the collective
spin of the array S ¼ PNat

j¼1 s
ðjÞ. After the initialization step

S ¼ Natex=2, see Fig. 2(a). Scattering of the circularly
polarized photon transfers the angular momentum to the
ensemble, and the collective spin is rotated in the x–z plane
towards z [Fig. 2(b)]. Indeed, as follows from Eq. (4),
this scattering process is described by the operator
σtot− GðωÞσtot;†þ ¼iαðωÞðSx−iSyÞ, where αðωÞ ¼ −γ1D=½ω−
ω0 þ ði=2Þγ1DðNat þ 1Þ þ iγ� is the effective polarizability
[15]. The imaginary term ði=2Þγ1DðNat þ 1Þ increases
linearly with Nat, reflecting collective enhancement of
the atom-photon coupling. The ratio between the radiative
and nonradiative decay rates in the denominator gives the
collective cooperativity CNat

¼ γ1DðNat þ 1Þ=ð2γÞ. The
spin operator Sx − iSy describes the increase of the absolute
value of the z projection of the collective pseudospin by 1
during the scattering of the first circularly polarized photon.

PHYSICAL REVIEW LETTERS 133, 113601 (2024)

113601-3



We expect that at the next step, Fig. 2(c), after the
interaction with V-polarized photons the collective spin
will rotate in the x-z plane back to its original direction
along x, described by Eq. (1), but some light will be
reflected in H polarization during this relaxation stage.
This directly follows from the matrix elements of atom-
photon interaction. The relevant operators describing
spin evolution are σtotV Gσtot;†V ¼ iα½ðNat=2Þ − Sx�, and
σtotH Gσtot;†V ¼ iαðSz − iSyÞ. Hence, application of a large
number of V photons should drive the spin to the eigenstate
of Sx operator. After the first σþ photon is scattered we
obtain hSzi ≠ 0, hSyi ¼ 0, and as long as hSzi remains
nonzero the expectation value of σtotH Gσtot;†V will also be
nonzero and the array will be able to reflect photons in H
polarization. In particular, the reflection coefficient of the
first V photon is given by the matrix element of σtotH Gσtot;†V
between the states with Sz ¼ 0 and Sz ¼ 1, that is

Rð1Þ
V→H ¼ jαj2. The final state, after a large number NV of

incident V photons, will be the state with Skx, Sx ¼ Nat=2
and Sz ¼ 0, so that V → H photon scattering process will
be no longer possible. It is this pinning of the spin to the x
axis by subsequent photon scattering events that we
interpret as a quantum Zeno effect [24,25,44–46].
Indeed, the spin dynamics is slowed down by the observer
trying to optically probe the spin state, which is the essence
of QZE.
We have performed a detailed simulation of the photon

reflection process. We calculate the average projection of
the total spin hSzi and the total number of reflected H

photons NH
totðNVÞ≡PNV

j¼1 R
ðjÞ
V→H depending on the number

of incident V-polarized photons NV . Here, the reflection

coefficient RðjÞ
V→H is the probability to reflect the jth

incident V-polarized photon with an H polarization.
Figure 3 shows the calculation results, described by
[15] NH

totðNVÞ ¼ NH
totð∞Þð1 − jχj2NV Þ, with NH

totð∞Þ ¼
NatCNat

=½ðNatCNat
þ Nat þ 1�ÞðN at þ1Þ� and χ ¼ 1þ iα.

In particular, Fig. 3(a) shows how NH
tot in the limit NV →

∞ depends on the number of atoms Nat and on the single-
atom cooperativity C1. One could expect dependence only
on the collective cooperativity CNat

¼ NatC1. This would
mean the same outcome for a large Nat with low C1 and a
single atom with highC1, provided thatCNat

stays the same.
However, this is not the case. The value of NH

tot monoto-
nously decreases with Nat along the line of constant CNat

[dotted curve in Fig. 3(a)]. The same effect is illustrated in
Fig. 3(b) that shows Nat versus NV at the four points of
constant CNat

, indicated by triangles in Fig. 3(a). Not only
does the limit NH

totðNV → ∞Þ decrease for larger Nat, but
also the value of NV required to approach this limit
increases. In other words, if the V photons arrive periodi-
cally in time, the dynamics of NH

tot is slowed down. The
slowdown is somewhat counterintuitive, since the photons
are coupled only to collective Dicke states of the array,

typically associated with faster dynamics. Here, however,
the larger Nat and the stronger the interaction with the
Dicke state, the slower the dynamics. This happens because
the relevant photon reflection process is quenched by the
collectively enhanced spontaneous decay rate. It is this
collective slowdown of the spin evolution that we interpret
as a Zeno effect responsible for the suppression of the
single-photon nonlinearity for large Nat.
The QZE interpretation can be corroborated by analyz-

ing the dependence of the hSzi spin projection onNV , given
by SzðNVÞ ¼ Szð0ÞReðχNV Þ or SzðNVÞ ¼ Szð0ÞRe eiαNV for
α ≪ 1. Thus, after a large number of incident photons the
spin returns to the stationary value along the x axis. The
corresponding dynamics is shown by filled triangles in
Fig. 4. It is instructive to study the effect of an external
static magnetic field along the y direction. Such a field
leads to the rotation of the collective spin in the x-z plane
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FIG. 3. (a) Total number of reflectedH photons NH
tot in the limit

NV → ∞ depending on the single-atom cooperativity γ1D=γ and
the number of atoms Nat. (b) Dependence of NH

tot on NV for
different values of Nat. For each value of Nat, we tune the
decay γ to keep constant the collective cooperativity,
CNat

¼ γ1DðNat þ 1Þ=ð2γÞ ¼ 5. Corresponding values of single-
atom cooperativity C1 ¼ γ1D=γ are shown in (a). The calculation
has been performed for ω ¼ ω0 and B ¼ 0.
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FIG. 4. Average spin projection hSzi calculated with and
without applied external magnetic field B and incoming V
photons. Calculation has been performed for the magnetic field
strength parameter φ ¼ 0.25, Nat ¼ 4, and CNat

¼ 5.
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[see Fig. 2(c)], which competes with the Zeno effect. To
describe this we introduce a total spin rotation ψ 0 ¼
expðiφSyÞψ to the wave function between the photon
scattering events. Here, φ is the spin rotation angle during
the time between the two incident V photons. This
simplified description assumes that the Zeeman splitting
is much smaller than the resonance linewidth and optical
selection rules are not modified. The calculated spin
dynamics is shown in Fig. 4 by the circles. Small filled
circles show the free spin rotation induced by the magnetic
field without any incoming photons. When the V-polarized
photons are sent upon the system (red open circles) the
oscillations are replaced by the slow decay of the spin
toward the equilibrium state. This further supports our
quantum Zeno effect interpretation.
Summary—We have developed an analytical framework

to describe the consecutive interaction of the Λ-atom
ensemble with multiple incident photons. Our calculations
reveal the quantum Zeno effect as the mechanism that
suppresses photon switching in large arrays. The conditions
required for the demonstration of this effect, namely
interacting with a controlled (or post-selected) number of
atoms within a single-sided cavity with single-
atom cooperativity C1 > 1, should be within the existing
capabilities of a number of cavity-QED labs (see for
example, Refs. [39–42]). We expect even more interesting
physics of collective light-matter interactions in the strong
excitation regime, or when the ensemble is driven by
nonclassical states of light.
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