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One-dimensional Bose gases with contact repulsive interactions are characterized by the presence of
infinite-lifetime quasiparticles whose momenta are called the “rapidities.” Here, we develop a probe of the
local rapidity distribution, based on the fact that rapidities are the asymptotic momenta of the particles after
a long one-dimensional expansion. This is done by performing an expansion of a selected slice of the gas.
We first apply this idea to a cloud in the quasicondensate regime at equilibrium in a trap. We obtain an
experimental picture of the position-dependent rapidity distribution which is in fair agreement with the
theory prediction. The asymptotic regime is barely reached, but we show that finite expansion time can be
taken into account using the generalized hydrodynamics theory. We then apply this local probe to an out-of-
equilibrium situation where the local rapidity distribution is expected to be doubly peaked—a hallmark of a
nonthermal state—even though the global rapidity distribution would possess no such distinctive feature.
We observe the doubly peaked local rapidity distribution.
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Ultracold atomic gases have long been identified as
versatile platforms for the investigation of quantum many-
body physics [1,2]. In particular, by freezing out degrees of
freedom, it is possible to experimentally realize various
paradigmatic models of low-dimensional many-body phys-
ics, such as one-dimensional (1D) gases with contact
interactions [3–9]. The latter include gases of bosons [4–
6,8,10,11] and fermions [7,9,12], sometimes with multiple
components [12–14]. Those systems, benchmarked suc-
cessfully against theoretical predictions at equilibrium
[10,11,15–17], have led to many fundamental advances
on out-of-equilibrium quantum many-body dynamics
[8,18–23].
The single-component 1D gas of bosons with contact

repulsive interactions is the simplest of all 1D gases. It is a
key example of an integrable quantum many-body system
[24,25], first investigated theoretically by Lieb and Liniger
[26,27]. The key notion in the theory is the distribution of
rapidities, which can be understood in at least three
different ways. A first—intuitive—way of thinking of
the rapidities is as the velocities of infinitely long-lived
quasiparticles that travel through the system (see, e.g., [28–
30]). A second—more formal—perspective is to view the
rapidities θj (j ¼ 1;…; N, where N is the number of
bosons) as parameters of the energy eigenstates, which
take the form of a Bethe wave function [24–27]:
ψðx1; x2;…; xNÞ ∝

P
σ Aσðθ1;…; θNÞ

Q
N
j¼1 e

imxjθσðjÞ=ℏ for
an eigenstate of energy E ¼ P

N
j¼1mθ2j=2, where m is the

atom mass. Here, the sum runs over all permutations σ of N
indices, the xj’s are the positions of the atoms, and theAσ’s

are amplitudes whose calculation is a key step in diagonal-
izing the Hamiltonian by the Bethe ansatz [24–27]. Finally,
a third perspective—a more operational one—consists in
viewing the rapidities as the asymptotic velocities of the
atoms after a 1D free expansion [31–33]: After a long 1D
expansion time τ, such that the interactions have become
negligible, the atoms are located at positions xj ≃ θjτ
[32,33], and their velocity is θj.
The latter operational perspective is particularly relevant

for experiments, as it allows one to measure the global
rapidity distribution of an experimental system, by per-
forming a 1D expansion before measuring either the
density profile or the momentum distribution of all the
atoms. The first such measurements were performed very
recently in bundles of strongly interacting 1D gases trapped
in a 2D optical array [22]; see also subsequent works
[34–36].
We stress that, in these recent experimental achieve-

ments, it is always the global rapidity distribution that is
measured: It is the rapidity distribution of an entire 1D atom
cloud regardless of its inhomogeneity—moreover, because
the measurement is performed on a bundle of 1D tubes, the
distribution is also averaged over all the tubes. In contrast,
in this Letter, our goal is to experimentally probe the local
rapidity distribution of a single inhomogeneous 1D
Bose gas.
The notion of local rapidity distribution naturally arises

when one considers inhomogeneous atom clouds at equi-
librium in a slowly varying potential, within the local
density approximation (LDA) [10,16,37]. In that approach,
the gas is viewed as a continuous fluid, where each point is
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a fluid cell assumed to be in a thermodynamic macrostate.
In integrable 1D gases, the thermodynamic macrostates are
generalized Gibbs ensembles [38–42] parametrized by their
intensive rapidity distribution ρðθÞ—which, in a fluid cell
of length l containing particles with rapidities θj, j ¼
1;…; Nl, corresponds to ρðθÞ ¼ ð1=lÞPNl

j¼1 δðθ − θjÞ
[39,43]. The continuous description of these gases within
LDA involves one such distribution ρðθÞ for each fluid cell
at point x: This is the local rapidity distribution ρðx; θÞ. The
local rapidity distribution plays a key role, not only in
equilibrium, but also in the out-of-equilibrium dynamics of
the gas, provided the latter is sufficiently slow to ensure
local relaxation to macrostates. The time evolution of
ρðx; θÞ is precisely the topic of generalized hydrodynamic
(GHD) [28,44], a theory which has attracted much attention
lately; see, e.g., [33,45–51].
In this Letter, we develop an experimental protocol to

probe ρðx; θÞ, and, as a proof of concept, we report
experimental results for a weakly interacting 1D Bose
gas at equilibrium in a harmonic potential (Fig. 2) and in an
out-of-equilibrium situation where we observe a doubly
peaked local rapidity distribution (Fig. 4).
Protocol—To experimentally probe the local rapidity

distribution, we propose the following protocol. With a
laser beam, one can “slice” the 1D atom cloud (Fig. 1): By
radiation pressure, it is possible to almost instantaneously
remove all the atoms outside a selected interval
½x0 − l=2; x0 þ l=2�, leaving only the atoms inside the
slice of length l unaffected. The atoms in the slice are in a
macrostate characterized by the rapidity distributionR x0þl=2
x0−l=2

ρðx; θÞdx=l ≃ ρðx0; θÞ. Then, by letting the atoms
in the slice expand along the 1D waveguide and by
measuring the atom density nðx; τÞ after a long expansion
time τ (Fig. 3), one can access the rapidity distribution

ρðx0; θÞ ≃ τnðx0 þ θτ; τÞ=l: ð1Þ
This method gives access to ρðx0; θÞwith a finite resolution
Δθ ∼ ℏ=ðmlÞ, and our slices are always very long, so that
Δθ is always much smaller that the typical width of our
rapidity distributions. Repeating the same procedure for
slices centered on different positions x0 allows one to map
out the distribution in the whole ðx; θÞ plane.
We now turn to a description of the experimental setup

and benchmarks.
Initial cloud—We magnetically confine 87Rb atoms in

the jF ¼ 2; mF ¼ 2i state. A quasiharmonic transverse
confinement of frequency ω⊥=2π ¼ 2.6 KHz guides the
atoms along x. For atoms in the transverse ground state, the
effective 1D coupling constant is g ¼ 2a3Dℏω⊥ [52], where
a3D ¼ 5.3 nm is the 3D scattering length of 87Rb [53].
Longitudinal confinement is provided by a harmonic
potential VðxÞ ¼ mω2x2=2 with ω=2π ¼ 5.4 Hz, which
can be turned off. Longitudinal density profiles are deduced
from absorption images. More details of the setup are given
in the Appendix.
Our cold atom clouds at equilibrium are prepared using

radio-frequency forced evaporation. The experimental atom
density nðxÞ is accurately fitted by the LDA prediction
based on the Yang-Yang equation of state at thermal
equilibrium [10,16,33] [Fig. 1(d), inset]. The temperature
and chemical potential estimated from the fit are smaller
than ℏω⊥=kB ¼ 123 nK, such that one expects the 1D
analysis to hold. To further estimate the occupation of
transverse excited states, we fit the atom density using the
modified Yang-Yang equation state introduced in Ref. [10];
we find a negligible improvement corresponding to a local
fraction of transversally excited atoms that never exceeds
7%. This confirms that our clouds are well in the 1D
regime.

(a) (b)

(c)

(d)

FIG. 1. Selection of a “slice” of the 1D cloud. (a) The atoms are trapped 7 μm under the atom chip, which is covered by a gold mirror.
The pushing beam reflects on a micromirror matrix (DMD), which is optically conjugated with the plane ðx; zÞ containing the atomic
cloud. The optical system includes an R∶T ¼ 10∶90 plate such that it contains the objective of numerical aperture 0.38, used also for
absorption images. (b) Each micromirror is tilted by �12°, such that it either sends the beam toward the imaging system (gray
micromirrors) or deviates it away. (c) Pushing beam intensity in the plane of the atoms: Gray areas are the illuminated zones. (d) In situ
density profiles measured after slicing at different positions x0. In the background, we show the density profile of the initial cloud, before
the slicing. Inset: the density profile before slicing is well fitted by the theory prediction at thermal equilibrium at temperature
TYY ¼ 90 nK and chemical potential μYY ¼ 49 nK × kB (dashed yellow line). The parabolic profile expected for the quasicondensate
equation of state is also shown (blue dashed line).
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The gas is weakly interacting, with a dimensionless
repulsion strength at the center of the trap γ ¼ mg=½ℏ2nð0Þ�
which goes from 0.4 × 10−2 to 0.7 × 10−2 depending on
the dataset, and the temperature of our 1D clouds satisfies
kBT ≪ nð0Þ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2g=m

p
[see [15] or Eq. (66) in [33] ],

implying that the gas is in the quasicondensate regime near
the trap center. There, the equation of state is close to
μ ≃ gn, leading to an LDA density profile nðxÞ ≃ ½μ −
VðxÞ�=g near the trap center [Fig. 1(d), inset].
Slicing the cloud—To cut a slice ½x0 − l=2; x0 þ l=2� of

the cloud, we shine the atoms out of the selected interval
with a beam perpendicular to the x axis [Fig. 1(a)], at a
frequency close to the F ¼ 2 → F0 ¼ 3 cycling hyperfine
transition of the D2 line. After about 15 absorption-
spontaneous emission cycles, the atoms are no longer
trapped, either because they fall in an untrapped Zeeman
state or because their kinetic energy exceeds the trap depth.
In order to spatially shape the pushing beam so that the
zone ½x0 − l=2; x0 þ l=2� stays in the dark, we use a digital
micromirror device (DMD) that is imaged on the atoms
[Figs. 1(a)–1(c)] through a high numerical aperture objec-
tive. We apply a 30 μs beam pulse, with an intensity
adjusted so that more than 99% of the illuminated atoms are
removed. The photon scattering rate is smaller than the
natural linewidth so that scattered photons are mainly
emitted at the laser frequency, and we detune the laser
by 15MHz in order to mitigate reabsorption of the scattered
photons by atoms in the dark zone.
In Fig. 1(d), we show the atom density nðxÞ measured

before slicing (gray line) and after slicing (colored lines),
for slices centered on seven different positions x0. The
slice length is l ¼ 37 μm. Each profile is averaged over
30 shots. The delay between the pushing beam and the
imaging beam is only 1.1 ms such that some of the pushed
atoms, although they are no longer trapped, are still in the
vicinity of the 1D cloud. These atoms contribute to the
absorption, which explains the background seen in
Fig. 1(d). Even for the smallest slice length we tested,
l ¼ 25 μm, the number of atoms that remain trapped after
the slicing is equal, within measurement precision, to its
expected value lnðx0Þ, and we do not see any detrimental
effect of the pushing pulse on the selected atoms [54].
Profiles after expansion of τ ¼ 40 ms—Right after the

pushing pulse, the longitudinal confinement is switched
off, and the cloud expands along the 1D waveguide. We
measure the density profile nðxÞ after an expansion time
τ ¼ 40 ms. In Fig. 2(a), we show the rescaled profiles
τnðx; τÞ=l after expansion, for the seven different slices of
Fig. 1(d) centered on different positions x0. For each slice,
we plot the rescaled profile as a function of the “rapidity”
θ ¼ ðx − x0Þ=τ. This gives an estimate of the rapidity
distribution in the whole ðx; θÞ plane, following Eq. (1).
For comparison, in Fig. 2(b), we show the theoretical
rapidity distribution ρðx; θÞ for the thermal equilibrium in
the harmonic potential VðxÞ at the temperature TYY and

chemical potential μYY obtained fitting the density profile.
We find a good agreement between the experimental
measurement and the theory expectation. However, this
comparison assumes that the expansion time is large
enough so that the density profile has converged to the
rapidity distribution. To test this assumption, we turn to an
analysis of the expansion dynamics.
Finite-time expansion—We start by checking that our

measured expansion profiles are independent of the slice
length l when one rescales the position and expansion
time:

nðx; τÞ ¼ F ½ρ0�ððx − x0Þ=l; τ=lÞ ð2Þ

for some function F that depends on the initial rapidity
distribution ρ0ðθÞ in the slice—assumed to be uniform
throughout the slice. Such scaling must hold for any
inviscid fluid whose description by hydrodynamic equa-
tions includes no dissipative terms (or spatial derivatives of
higher order)—this is also known as the “Euler scale” or
“hydrodynamic limit” [63]. This Euler scaling is well
satisfied by our expansion data, at least for slices near
the center of the cloud [Fig. 3(b)]. This implies that we
should be able to capture the finite-time expansion dynam-
ics of our slices with Euler-scale GHD simulations [28,44].
In these simulations, the rapidity distribution fðx; θ; τÞ,
initially equal to fðx; θ; 0Þ ¼ ρ0ðθÞ ¼ ρðx0; θÞ if jx − x0j ≤
l=2 and fðx; θ; 0Þ ¼ 0 otherwise, evolves according to

∂τf þ ∂xðveff½f�fÞ ¼ 0; ð3Þ

where the effective velocity satisfies the integral equa-
tion veff½f� ðθÞ ¼ θ−

Rfð2g=mÞ=½g2=ℏ2 þ ðθ− θ0Þ2�g½veff½f�ðθÞ−
veff½f� ðθ0Þ�fðθ0Þdθ0. In Fig. 3, we compare our experimental

expansion profiles for the central slice to the results of the

FIG. 2. (a) Rescaled density profiles τn=l with τ ¼ 40 ms and
l ¼ 37 μm for the different slices in Fig. 1(c), centered on
different positions x0. (b) Theory prediction for the rapidity
distribution ρðx; θÞ at thermal equilibrium in the potential VðxÞ at
the temperature TYY and chemical potential μYY [obtained by
fitting the in situ profile in Fig. 1(d)].
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GHD simulation, assuming that ρ0 is the rapidity distri-
bution of a thermal state at the temperature TYY and the
chemical potential μYY obtained by fitting the equilibrium
profile [Fig. 1(d)]. We find a good agreement between data
and simulations, confirming that GHD captures the expan-
sion dynamics.
Note that, for clouds lying deep into the quasicondensate

regime such as our clouds, the functional F ½ρ0� takes a
particular form that depends only on n0 ¼

R
dθρ0ðθÞ and

on c0 ¼ gn0=m, as shown in the Appendix.
We can then use GHD as a tool to analyze the

convergence of the expansion profiles toward the rapidity
distribution. We find deviations between the finite-time
GHD profile and the asymptotic one of ∼12% in the central
part [see Fig. 3(c)]. A convergence to better than 2% would
require an unrealistic expansion time of 400 ms. Thus,
using Eq. (1) to deduce the rapidity distribution from the
profiles after expansion gives only an approximate estimate
of the rapidity distribution. Nevertheless, for each x0, one
could, in principle, extract ρðx0; θÞ from a fit of the
measured density profile after expansion with the one
calculated with GHD (see the Appendix for more on this).
Observation of doubly peaked local rapidity distribution

in an out-of-equilibrium situation—Finally, we apply our
local probe to an out-of-equilibrium situation. We start
from a cloud at equilibrium in the trapping potential as
above and then use our pushing beam, shaped by the DMD,
to remove all the atoms lying in the region ½−L=2; L=2�,

with L ¼ 60 μm. This is the initial state of our cloud. We
then turn off the longitudinal potential and let the gas
evolve freely along the 1D waveguide for 15 ms. At this
point, we expect the local rapidity distribution near x ¼ 0 to
develop a double-peak shape (Fig. 4). We then probe the
rapidity distribution near x ¼ 0 with our protocol (cutting a
slice of width l ¼ 36 μm around x ¼ 0 and letting it
expand for τ ¼ 50 ms). We clearly observe the double-
peak shape, thus demonstrating that the gas is locally in a
state that is very far from thermal equilibrium.
We stress that, here, probing the local rapidity distribution

—as opposed to the global rapidity distribution, integrated
over the whole cloud—is crucial. Indeed, in the absence of
longitudinal confinement, the global rapidity distribution is
a constant of motion, so it does not evolve at all. So, here, a
measurement of the global rapidity distribution after the
evolution of 15 ms would simply yield the integrated
rapidity distribution of the initial state, which is locally
thermal. It is really the fact that we can probe the local
rapidity distribution that leads to an interesting observation
in this situation.
Conclusion—We implemented a local probe of the

rapidity distribution of our 1D gases, performing a spatial
selection followed by a 1D expansion. We first applied this
tool to probe the local rapidity distribution of a gas at
equilibrium in a harmonic trap, finding a phase-space
distribution of quasiparticles ρðx; θÞ that is in good agree-
ment with the one predicted by Yang-Yang thermodynam-
ics. Our clouds lie deep into the quasicondensate regime,
and our results constitute the first probe of the rapidity
distribution in this regime. Our expansion times are limited,
but the effects of finite-time expansion can be modeled

FIG. 4. Observation of a doubly peaked local rapidity distribu-
tion in an out-of-equilibrium situation. (a) The initial state of our
atom cloud is prepared by starting with atoms at equilibrium in the
trap and then removing all the atoms from a region of width L ¼
60 μm with the pushing beam. Then we turn off the longitudinal
trapping potential and let the gas evolve freely in 1D for 15ms.We
then probe the local rapidity distribution near x ¼ 0. On the phase-
space pictures obtained from a GHD simulation, one clearly sees
that the local rapidity distribution near the origin should then be
strongly nonthermal. (b) The green curve shows the measured
rapidity distribution, obtained by plotting τnðx=τÞ=l for a slice of
width l ¼ 36 μm and an expansion time of τ ¼ 50 ms. It clearly
exhibits the expected double-peaked structure, and it is in good
agreement with the theory expectation for the rapidity distribution
(including the corrected prediction taking into account the finite
expansion time).

FIG. 3. (a) 1D expansion of the slice at x0 ¼ 0 of length
l ¼ 37 μm. The gray profile corresponds to the initial cloud. The
density profiles after different expansion times are plotted in
colored lines. Black dashed lines are GHD simulations for an
initial thermal rapidity distribution at the temperature TYY and
chemical potential μðx0Þ ¼ μð0Þ ¼ μYY, where TYY and μYY are
extracted from the in situ profile [Fig. 1(d)]. (b) Check of “Euler”
scaling (2). For a fixed value τ=l ¼ 0.39 ms=μm, we compare
the density profiles for slices with different l centered on x0 ¼ 0.
(c) Comparison between the experimental expansion profile at
τ ¼ 50 ms [the same data as in (a)], the GHD simulation at τ ¼
50 ms (dashed line), and the rapidity distribution (purple),
rescaled according to Eq. (1).
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using GHD calculations, as we have checked that our
expansions are well described by hydrodynamics. We then
turned to a nonequilibrium situation and observed a doubly
peaked local rapidity distribution, a clear signature of a
nonthermal local state of the gas. Our new tool opens up
exciting perspectives, in particular, for nonequilibrium
scenarios like bipartite quench protocols [28,44] or to
investigate the nonthermal stationary states of the Lieb-
Liniger model that are expected to be produced by atom
losses [64].
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End Matter

Appendix A: Atom chip setup—The trapping magnetic
field is created by currents running through microwires
deposited on a chip [65]. The transverse trapping
potential, which confines the atoms in 1D, is created by
three parallel 1-mm-long microwires [66], with currents
modulated at 400 KHz, together with a continuous
magnetic field along x of 3.36 G. The atoms, which
experience the time-averaged potential, are guided
15 μm above the central wire (7 μm above the golden
mirror that covers the chip). The longitudinal potential
VðxÞ is created by perpendicular wires with continuous
current. This setup ensures independent control of the
transverse and longitudinal potentials, a crucial point for
measuring the rapidities, as one needs to perform 1D
expansions by switching off the potential VðxÞ while
maintaining the transverse confinement.
All data are extracted form absorption images. Prior to

the absorption pulse, all confinements are removed and the
cloud undergoes a 1 ms time of flight, long enough to
remove the effects of strong atomic densities on absorption
but short enough to leave the longitudinal density profile
unaffected. The latter is obtained by integrating the
absorption images transversally.

Appendix B: Gross-Pitaevskii limit—Our 1D clouds
are in the quasicondensate regime, and, therefore, we
expect the expansion to be well described by Gross-
Pitaevskii (GP) hydrodynamics:

∂τnþ ∂xðvnÞ ¼ 0;

∂τvþ v∂xv ¼ −
g
m
∂xn; ðB1Þ

where nðx; τÞ is the atom density, vðx; τÞ is the local
fluid velocity, and g is the 1D repulsion strength. These
two hydrodynamic equations are obtained from the GP
equation in Madelung form after dropping the “quantum
pressure” term (see, e.g., Supplemental Material of
Ref. [21] or [33]). Such a description should be valid
before the appearance of a shock [67]. Actually, it is not
difficult to see that the two equations (B1) are
equivalent to the GHD equations in the limit of small
γ ¼ mg=ðℏ2nÞ and at zero temperature [67–69]. Indeed,
it is well known that the rapidity distribution of a gas of
density n in its ground state is [26,27], when γ → 0,

ρg:s:ðn; θÞ ¼
m
2πg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θFðnÞ2 − θ2

q
ðB2Þ

with the Fermi rapidity θFðnÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
gn=m

p
. During the

slice expansion, the gas remains locally in a state that is
the ground state up to a Galilean boost by the velocity
vðx; τÞ, resulting in the local rapidity distribution
fðx; θ; τÞ ¼ ρg:s:ðnðx; τÞ; θ − vðx; τÞÞ. Thus, it is natural
to parametrize the time-dependent local rapidity
distribution with the functions θþðx; τÞ and θ−ðx; τÞ such
that fðx;θ;τÞ¼ðm=2πgÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−½θþðx;τÞ−θ�½θ−ðx;τÞ−θ�
p

and

n ¼ m
16g

ðθþ − θ−Þ2;

v ¼ θþ þ θ−
2

: ðB3Þ
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The GHD equation then reads [67]

∂τθ�ðx; τÞ þ veff½ρ� ðθ�ðx; τÞÞ∂xθ�ðx; τÞ ¼ 0: ðB4Þ
In the frame moving at the local velocity v, the effective
velocity computed at θF (respectively, −θF) is the speed
of sound

ffiffiffiffiffiffiffiffiffiffiffi
gn=m

p
(resp. − ffiffiffiffiffiffiffiffiffiffiffi

gn=m
p

). Coming back to the
lab frame and using Eq. (B3), we then have veff½ρ� ðθþÞ ¼
ð3θþ þ θ−Þ=4 and veff½ρ� ðθ−Þ ¼ ðθþ þ 3θ−Þ=4. Plugging

this into Eq. (B4) and using Eq. (B3), one recovers the
GP hydrodynamic equations (B1).
By dimensional analysis [54], the solution of the

hydrodynamic equations (B1) with the initial condition
nðx; τ ¼ 0Þ ¼ n0 if jx − x0j < l=2 and 0 otherwise, and
vðx; τ ¼ 0Þ ¼ 0, is of the form

nðx; τÞ ≃ n0G
�
ðx − x0Þ=l;

ffiffiffiffiffiffiffi
gn0
m

r
τ=l

�
; ðB5Þ

where n0 ¼
R
ρ0ðθÞdθ is the initial atomic density in the

slice and G is a dimensionless function. This implies that
the functional F ½ρ0� of Eq. (2), in the Gross-Pitaevskii limit,

reduces to F ½ρ0�ðα; νÞ ≃ n0Gðα;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðgn0=mÞp

νÞ. The analyti-
cal expression of G is unknown to our knowledge, besides
its asymptotic value: We expect from Eqs. (1) and (B2) that
Gðα; βÞ ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − ðα=βÞ2

p
=ð2πβÞ for large β. Near the trap

center, our clouds lie deep into the quasi-BEC regime, and
the rapidity distribution is expected to be close to this
semicircle distribution [see Fig. 5(b)]. As for the expansion
dynamics, it obeys very well the scaling of Eq. (B5) [see
Fig. 5(a)].
Note that the out-of-equilibrium protocol investigated in

this Letter leading to the doubly peaked local rapidity
distribution corresponds, within this Gross-Pitaevskii limit,
to the collision of two condensates. The hydrodynamic

equations (B1) would lead to a shock in such a situation,
and one should keep the quantum pressure term. One then
predicts the appearance of density modulations in the
central zone due to interference effects [55] of wavelength
of about 0.5 μm. For our gases, thermal effects are expected
to hinder the observation of such modulations.

Appendix C: Extracting the rapidity distribution from
the expansion profile—As pointed out in the main text,
while the density profile after expansion gives only an
estimate of the rapidity distribution, one could, in
principle, extract ρðx0; θÞ from a fit of the measured
density profile after expansion with the one calculated
with GHD. For this, one needs an ansatz for the initial
state ρðx0; θÞ, parametrized by a few parameters, whose
number is limited by the finite signal over noise of the
data and the calculation time.
We performed such fits, for the equilibrium data, using a

homogeneous thermal state in the slice, with the temper-
ature as fit parameter. Fitting the expansion for the central
slice (Figs. 3–6), we find a temperature Tfit ¼ 230 nK, 2.5
times higher than TYY. Although Tfit differs strongly from
TYY, the rapidity distributions corresponding to these two
temperatures are close. This is because, deep in the
quasicondensate regime, the rapidity distribution is domi-
nated by interaction effects and it only mildly depends on
the temperature. Also, we observe that the ratio Tfit=TYY is
maximal for the slice at x0 ¼ 0, and it decreases for slices
that are further away from the cloud center, as shown in
Fig. 6. The spatially dependent temperatures deduced from
the fits with GHD of the expansion profiles are incompat-
ible with the fact the cloud shape is time invariant [54]. The
origin of this inconsistency still needs to be elucidated. It
might be the signature that the rapidity distribution is
nonthermal. However, more spurious effects cannot be
excluded.

(a) (b)

FIG. 5. Gross-Pitaevskii limit. (a) GP hydrodynamic scaling
[Eq. (B5)]: For a given β ¼ ðτ=lÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi

gn0=m
p ¼ 2.65, and for

l ¼ 37 μm, we plot the density profiles for two different
densities n0, obtained by slicing the cloud at different positions
x0. (b) Comparison of the semicircle rapidity distribution of the
GP limit with the thermal rapidity distribution computed from
Bethe ansatz for the temperature TYY and the chemical potential
μYY extracted from the in situ profile [Fig. 1(d)].

FIG. 6. The experimental expansion profile for τ ¼ 40 ms
(gray curve, the same initial cloud as in Figs. 1–3) is fitted with
the GHD calculations assuming a thermal rapidity distribution.
We obtain the purple dashed line associated to the temperature
Tfit ¼ 230 nK. The black dashed line corresponds to the GHD
simulation obtained with TYY ¼ 90 nK, the temperature ex-
tracted by the Yang-Yang fit of the density profile [Fig. 1(d)].
The inset shows the temperature fitted for slices centered at
different positions x0. The dashed black line shows TYY.
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