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Quantum simulations of the dynamics of QCD have been limited by the complexities of mapping the
continuous gauge fields onto quantum computers. By parametrizing the gauge invariant Hilbert space in
terms of plaquette degrees of freedom, we show how the Hilbert space and interactions can be expanded in
inverse powers of Nc. At leading order in this expansion, the Hamiltonian simplifies dramatically, both in
the required size of the Hilbert space as well as the type of interactions involved. Adding a truncation of the
resulting Hilbert space in terms of local energy states we give explicit constructions that allow simple
representations of SU(3) gauge fields on qubits and qutrits. This formulation allows a simulation of the real
time dynamics of a SU(3) lattice gauge theory on a 5 × 5 and 8 × 8 lattice on ibm_torino with a CNOT
depth of 113.
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The real time dynamics of strongly coupled quantum
field theories such as quantum chromodynamics (QCD) are
relevant to many processes in high energy physics. These
include phenomena such as hadronization, jet fragmenta-
tion, and the behavior of matter under extreme conditions
such as in the early universe. The numerical study of QCD
on a lattice using Monte Carlo (MC) integration has
enabled precision nonperturbative calculations of a number
of observables [1–6]. However, for many observables such
as the QCD shear viscosity and inelastic scattering ampli-
tudes, Monte Carlo integration is limited due to a sign
problem [7]. Hamiltonian lattice QCD formulations prom-
ise to circumvent the sign problem, but are still exponen-
tially difficult to simulate on classical computers. Research
in Hamiltonian formulations has gained importance
recently due to advances in the development of quantum
computers based on a number of different platforms, such
as superconducting qubits, trapped ions, and neutral atoms
[8–18]. It is anticipated that simulations performed on
quantum computers will be able to directly probe real-time
dynamics with polynomially scaling computational costs
[19–25]. The continuous gauge fields need to be digitized
to map them onto a quantum computer’s discrete degrees of
freedom. Common basis choices for the Hilbert space of a

lattice gauge theory (LGT) correspond to choosing on each
link group elements (magnetic basis) [26–33], group
representations (electric basis) [34–63], or a mixture of
the two [64–67], and digitizations can be obtained in each
of the choices. These formal developments have been used
to perform a number of quantum simulations on existing
hardware including simulations of the Schwinger model,
1þ 1D QCD, SU (2), and SU(3) gauge theories on small
lattices and some discrete groups [30,31,46–52,68–82].
However, most quantum simulations of lattice gauge
theories have been restricted to either small systems or
one-dimensional systems. Going beyond ð1þ 1ÞD systems
is limited by the complexity of implementing plaquette
operators which are not present in one spatial dimension.
In this work we will use an electric basis, in which states

are labeled by the representation of the gauge group at each
link and gauge invariance can be implemented using local
constraints that implement Gauss’s law at each lattice site.
The electric basis can be digitized by truncating the allowed
representations at each link, which amounts to limiting the
local energy allowed. This can be done in a way that
respects gauge invariance, and gauge invariance can be
used to integrate out some unphysical states at the cost of a
slight increase in the nonlocality of the Hamiltonian [48].
In this work we add an expansion in the number of colors

Nc to the electric basis formulation. It is known that such a
1=Nc expansion leads to simplifications in perturbative
QCD (for a review, see Refs. [83,84]), and is a crucial
ingredient in many calculational frameworks of QCD, most
notably the parton shower approximation [85,86].
Combining a large Nc expansion with the lattice formu-
lation of QCD will enable lattice calculations to reproduce
the results of these frameworks and determine 1=Nc
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corrections to them. While the physical value of Nc ¼ 3 is
not particularly large, such expansions have been shown to
be very successful phenomenologically [85–89].
Additionally, the large Nc limit of QCD has been shown
to be connected to models of quantum gravity through the
AdS/CFT correspondence [90].
The large Nc limit can be understood as a classical limit

[91,92] and by expanding in 1=Nc more nonclassical
features of the theory will be included in the quantum
simulation. Note that the classical limit has a degree of
freedom for each possible loop on the lattice which limits
its applicability to simulating dynamics on classical com-
puters [92–94].
The Kogut Susskind Hamiltonian describing pure SU(3)

LGT is given by

Ĥ ¼ g2

2

X
l∈ links

Ê2
l −

1

2g2
X

p∈ plaquettes

ð□p þ□
†
pÞ; ð1Þ

where g is the strong coupling constant, Ê2
l ¼ Êc

l Ê
c
l with Ê

c
l

the SU(3) chromoelectric field on link l, and□p is the trace
over color indices of the product of parallel transporters on
plaquette p [95–98]. In the electric basis, the Hilbert space
on each link is spanned by states jR; a; bi where R is an
irreducible representation of SU(3) and a and b label states
in the representation R acting from the left and right.
The SU(3) representation at each link on a point-split

lattice can be labeled by the two quantum numbers p and q,
due to SU(3) being a rank two group. A gauge invariant
representation requires representations at each vertex to
combine into a singlet. This is most easily accomplished
using point-split vertices and requiring that the quantum
numbers at each three-point vertex add to zero. This has
previously been used in formulations of q-deformed lattice
gauge theories [99,100] and is very similar to the approach
taken in loop string hadron formulations [41–43,101].
As explained in Appendix A, an alternative labeling of a

gauge invariant Hilbert state is obtained by specifying
oriented closed loops, denoted by L, and the way the arrows
at each link having more than one loop pass through are
combined, denoted by a. A basis state can therefore be
written as jfLi; algi. The only physically relevant states
have nonzero overlap with those obtained by acting on the
electric vacuum state j0i with an operator ÔfPp;P̄pg con-

taining Pp (P̄p) powers of the plaquette operator □p (□†
p)

at each plaquette p. While other gauge invariant states do
exist, they are in different topological sectors and do not
need to be represented on the quantum computer as
different topological sectors do not interact. For example,
a state with a loop of electric flux winding across the entire
lattice has a nontrivial winding number and is not coupled
to the electric vacuum. The operator ÔfPp;P̄pg allows us to
define the state

jfPp; P̄pgi ¼ ÔfPp;P̄pgj0i: ð2Þ

As shown in Appendix B, the overlap between jfLi; algi
and jfPp; P̄pgi at leading order in large Nc is given by

hfLi; algjfPp; P̄pgi ∝
Y
i

N1−mi
c ; ð3Þ

wheremi counts the total number of plaquettes encircled by
each loop Li. Therefore, the only overlap that survives in
the large Nc limit is the one with states jfLi; algi for which
each loop encircles exactly one plaquette, such that all
mi ¼ 1. This leads to the final result that in the large Nc
limit each state can be specified by the number of single-
plaquette loops in the positive and negative direction at
each plaquette and a at each link traversed by multiple of
these loops. These states are orthonormal to each other,
such that the Hilbert space is spanned by the basis

H ¼ spanfjfal; np; n̄pgig: ð4Þ

Because of the suppression of larger loops, the dimension
of the Hilbert space in the large Nc limit is dramatically
reduced. Another important simplification is that in this
formulation no virtual point splitting is required.
So far, our discussion has not used any truncation of the

Hilbert space. However, a truncation is necessary to map
the theory onto the finite dimensional Hilbert space of a
quantum computer. As already discussed, a standard way of
truncating the Hilbert space is to limit the energy stored in
each link of the lattice, which in turn limits the Hilbert
space to those states for which the Casimir at each link is
below a certain value. This truncation preserves all sym-
metries of the Hamiltonian, most importantly gauge invari-
ance, which guarantees the truncated theory either to have a
lattice spacing that freezes out or goes to a theory with the
correct gauge symmetry and matter content in the con-
tinuum limit [102]. Simulations of truncated 1þ 1D
theories have demonstrated the freezing out of the lattice
spacing [103–108], although some infrared properties of
the theory can still be recovered [109]. This truncation
amounts to limiting the total value of pþ q at each link.
The simplest nontrivial truncation is to require pþ q ≤ 1
which only includes the fundamental and antifundamental
representations. Working to leading order in large Nc, this
allows at most one loop excitation at each plaquette.
Furthermore, a plaquette can only be excited if all adjacent
plaquettes are in the ground state. The only allowed values
for fnp; n̄pg are then {0,0}, {0,1} or {1,0}, and no
specification of al is necessary.
The Hilbert space at this truncation can therefore be

described by assigning a qutrit to each plaquette in the
lattice. The states of the qutrit will be labeled by j0i, j↺i,
and j↻i. Physical states are subject to the constraint that
neighboring plaquettes are not simultaneously excited. For
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example, in a two plaquette system, the states j↺ij0i and
j↻ij0i are physical while j↻ij↻i and j↺ij↻i are not,
since it would give rise to the common link having
pþ q > 1. Similar constructions have been used to study
SU(2) lattice gauge theory in the electric basis on plaquette
chains and a hexagonal lattice [50,110–115]. However,
note that the basis given here can work in higher spatial
dimensions and with periodic boundary conditions as there
is no potential double counting of states at this truncation
unlike previous work on the hexagonal lattice.
If one works to leading order in Nc ¼ 3 and in 2þ 1D,

the electric field operator for a link l lying on plaquettes p
and p0 at this truncation can be written as

Ê2
l ¼ 4

3

�j↺iph↺jp þ j↺ip0 h↺jp0 þ ðj↺i ↔ j↻iÞ�; ð5Þ

where we have used the full expression of the Casimir of
the fundamental representation Cf ¼ ðN2

c − 1Þ=ð2NcÞ ¼
4=3. The plaquette operator at position p is given by

b□p ¼ P̂0;pþx̂P̂0;p−x̂P̂0;pþŷP̂0;p−ŷ

× ðj↺iph0jp þ j↻iph↺jp þ j0iph↻jpÞ; ð6Þ

where P̂0;p ¼ j0iph0jp and p� x̂ (p� ŷ) denotes the
plaquette one position away in the x (y) direction.
This Hamiltonian has a charge conjugation (C) sym-

metry that causes states with the antisymmetric combina-
tion ð1= ffiffiffi

2
p Þðj↺i − j↻iÞ anywhere on the lattice to

decouple from the rest of the Hilbert space. This decoupling
can be seen by repeated applications of the plaquette
operators to the electric vacuum. Explicitly, we have

□̂pj0i ¼ j↺i þ j↻i

□̂p
1ffiffiffi
2

p ðj↺i þ j↻iÞ ¼
ffiffiffi
2

p
j0i þ 1ffiffiffi

2
p ðj↺i þ j↻iÞ; ð7Þ

so the state ð1= ffiffiffi
2

p Þðj↺i − j↻iÞ is never coupled to the rest
of the Hilbert space. One can therefore perform separate
simulations for the C even and odd sector. By assigning
j1i ¼ ð1= ffiffiffi

2
p Þðj↺i � j↻iÞ, the C (anti)symmetric sub-

space can be described by assigning a qubit to each
plaquette instead of a qutrit. As already mentioned,
physical states have the constraint that neighboring qubits
cannot both be in the j1i state. With this encoding, the
Hamiltonian for the C even sector is given by

Ĥ ¼
X
p

�
8

3
g2 −

1

2g2

�
P̂1;p

−
1

g2
ffiffiffi
2

p P̂0;pþx̂P̂0;p−x̂P̂0;pþŷP̂0;p−ŷX̂p; ð8Þ

where P̂1;p ¼ j1iph1jp and X̂p is the Pauli X operator
acting on the qubit at plaquette p. It is interesting to note

that the plaquette operator at this truncation is a PXP term.
PXP models have previously been studied as an effective
Hamiltonian describing the low energy subspace of
Rydberg atom arrays which can be described by Ising
models [116–118]. It has been studied in the context of
thermalization where the presence of scar states has been
demonstrated [119–123]. Equation (8) can be described as
a limit of an Ising model with fields in the x̂ and ẑ directions
and that in this regime the Ising model has been shown to
demonstrate confinement [124–126]. This suggests that it
may be possible to connect the presence of confinement in
the Ising model to the physics of large Nc Yang Mills.
There are three representations with C ∼ Nc, namely,

p ¼ 2, q ¼ 2, and p ¼ q ¼ 1, and the next truncation in
the large Nc limit should include all three of those states.
However, taking into account subleading Nc corrections,
the representation with the second smallest Casimir at large
Nc is the antisymmetric combination of two fundamental
representations with C ¼ Nc − 1 − ð2=NcÞ. Note that in
SU(3), this is just the 3̄ representation. Changing the
truncation to include this representation allows neighboring
plaquettes to be excited and includes states with vertices
that have three incoming or outgoing 3 representations. As
shown in more detail in the Supplemental Material [127],
this truncation still fixes the representation on each link by
the number of loops on the neighboring plaquettes, and
each plaquette can still only be in the three possible states
j0i, j↺i, and j↻i. A pair of neighboring plaquettes can
only be in one of the following states j0ij0i, j0ij↺i, j↺ij0i,
j0ij↻i, j↻ij0i, j↺ij↻i, or j↻ij↺i. The Hilbert space is
therefore still spanned by a qutrit at each plaquette.
At this truncation, the electric field operator on a link

shared between plaquettes p and p0 is given by

Ê2 ¼ 4

3

�j↺iph↺jp þ j↺ip0 h↺jp0 þ ðj↺i ↔ j↻iÞ�
−
4

3

�j↺iph↺jpj↻ip0 h↻jp0 þ ðj↺i ↔ j↻iÞ�: ð9Þ

The plaquette operator is given by

□̂p ¼
X

ck;si;sf

M
si;sf
c1;c2;c3;c4

× P̂c1;p−x̂P̂c2;pþx̂P̂c3;p−ŷP̂c4;pþŷ

× ðjsfihsij þ jsiihsfjÞ: ð10Þ

Using results in the Supplemental Material, it can be seen
thatM

si;sf
0;0;0;0 ¼ 1 for all si and sf, and when the controls are

not all 0, M
si;sf
c1;c2;c3;c4 ¼ 3−ne=2 for transitions between

allowed physical states where ne is the number of excited
neighboring plaquettes.
The Hamiltonians obtained at the two truncations dis-

cussed above have only negative off-diagonal elements.
This means that their static properties can be studied using
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Monte Carlo techniques without a sign problem [128,129].
This can be helpful for quantum simulation as classical MC
calculations can be used to generate ensembles of states
that when averaged produce a thermal distribution [130–
134]. These states can be initialized on quantum computers
which would allow for studying dynamics of this theory at
finite temperature without a sign problem. Additionally,
many of the variables used in scale setting in traditional
lattice QCD are defined in terms of Euclidean correlation
functions which are difficult to access on quantum com-
puters [53,135–137]. For these truncated Hamiltonians,
classical MC calculations can be used to compute these
variables to set the scale for a simulation with the same
Hamiltonian on a quantum computer [136].
To probe the effects of working to leading order in large

Nc expansion, the electric vacuum was evolved in time on a
4 × 1 lattice with periodic boundary conditions (PBC).
Figure 1 shows the evolution of ð1=TÞ R T

0 dthψðtÞjĤEjψðtÞi
as a function of T for a SU(3) LGT truncated at pþ q ≤ 1.
At long times, this observable is expected to equilibrate to a
thermal value determined by the initial state’s energy. As
Fig. 1 shows, the relative error from the large Nc expansion
is roughly 20% which should be expected from expanding
in ð1=NcÞ with Nc ¼ 3.
As an example of how the formalism introduced in this

work can be used for quantum simulation, the Hamiltonian
in Eq. (8) was simulated on IBM’s 133 qubit super-
conducting quantum computer ibm_torino [138,139].

Because of the connectivity of the hardware, open boun-
dary conditions were used. Time evolution was imple-
mented using Trotterized time evolution operators. Errors
in the calculation were suppressed using XX dynamical
decoupling sequences and Pauli twirling [50,52,140,141].
Errors in the gates were mitigated using operator
decoherence renormalization and CNOT noise extrapola-
tions [50,52,79,141–146]. Readout errors were mitigated
using twirled readout error extinction (T-REX) [147]. Since
the number of Trotter steps that can be run on quantum
hardware is limited, we utilize multiple time step sizesΔt to
obtain results at more t values. Increasing Δt will increase
the size of time discretization errors in the simulation, but
this can be mitigated by choosing Δt such that late time
slices are sampled by multiple values of Δt, which then
allows an extrapolation to small Δt. The details of the
implementation of these techniques are described in the
Supplemental Material.
A 5 × 5 lattice with g ¼ 1 was simulated using a set

of 39 qubits on ibm_torino. Because of open boundary
conditions, this lattice has 4 × 4 plaquettes. Sixteen of the
qubits were used to represent the Hilbert space of the theory
and the remaining qubits were used to enable efficient
communication between them. The system was initialized
in the electric vacuum and the probability of a qubit being
excited averaged over the lattice is shown in Fig. 2 [148],
showing results both from classical simulations of this
relatively small system and from runs on quantum hard-
ware using ibm_torino. We observe good agreement
between the classical simulation and the results from
ibm_torino. Note that this observable is proportional to
the electric energy in the system, and previous work has
used the evolution of the electric energy as a probe of
thermalization times in SU(2) lattice gauge theory [150].SU(3)
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FIG. 1. Calculation of ð1=TÞ R T

0 dthψðtÞjĤEjψðtÞi on a 4 × 1
lattice with periodic boundary conditions and g ¼ 1. The blue
line shows the simulation for a SU(3) lattice gauge theory
truncated at pþ q ≤ 1, using the formalism introduced in
Ref. [48]. The purple line shows the time evolution computed
with the largeNc truncated Hamiltonian in Eq. (8). The black line
underneath shows the ratio of the large Nc electric energy to the
SU(3) electric energy.
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FIG. 2. Average probability of a plaquette being excited from
the electric vacuum as a function of time on a 4 × 4 and 7 × 7
plaquette lattice with open boundary conditions and g ¼ 1. The
dark green points are an exact classical simulation. The dark blue
points were obtained by tensor network simulations of up to two
Trotter steps. The light blue and green points are the error
mitigated results from ibm_torino.
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Having validated the quantum circuits for the 5 × 5
lattice, an 8 × 8 lattice with open boundary conditions was
simulated on ibm_torino as well. This requires 49 qubits to
represent the state of the system and the remaining qubits
are used to enable communication between them. The
average probability of a plaquette being excited is shown in
Fig. 2. Simulating the time evolution for a system of this
size is beyond the reach of brute force state vector
simulation. Vacuum properties of large one-dimensional
systems can be simulated efficiently using tensor networks
[151–155]; however, performing real time evolution
requires resources that grow with evolution time. Scaling
tensor network calculations to multiple spatial dimensions
is practically challenging [156]. The dark blue points in
Fig. 2 show tensor network simulations of up to two Trotter
steps of the circuits that were implemented on ibm_torino
using cuQuantum [157] on a single NVIDIA A100 GPU.
Two Trotter steps took roughly one minute to run, however,
three Trotter steps did not finish running within 20 h. For
this reason, there is no extrapolation to Δt ¼ 0 in the
classical simulation or classical data for three Trotter steps.
Because of the lack of the Δt ¼ 0 extrapolation in the
classical simulation and validation of the quantum circuits
on a smaller lattice, it is expected that data from ibm_torino
are a more accurate simulation of the dynamics of the
system than the tensor network calculations. Note that
further optimization of the classical simulation is likely to
reduce the run-time; however, this system is still in the
regime where classical simulation is expected to be
difficult. For reference, running and processing all of the
quantum circuits for a single time step took roughly 7 min.
In this work, a large Nc expansion was combined

with electric basis truncations of the Kogut-Susskind
Hamiltonian. This led to significant simplifications of
the Hamiltonian and enabled a quantum simulation of
SU(3) lattice gauge theory in multiple spatial dimensions. It
is expected that this formalism can be extended to three
spatial dimensions and to include matter. Going to sub-
leading order in 1=Nc and to larger truncations should also
be possible systematically. The simplifications from trun-
cating at some order in 1=Nc and success of large Nc
expansions may allow for near term simulations of
phenomenologically relevant phenomena such as in-
elastic scattering, jet fragmentation, or thermalization.
Additionally, the connection of the large Nc limit of
SUðNcÞ gauge theories to quantum gravity may allow
quantum simulations of these truncations to give insights
into some models of quantum gravity.
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End Matter

Appendix A: Graphical representation of basis states
—To explain the large Nc counting employed in this
work, it will be useful to develop some graphical
notation for physical states on a lattice. The Hilbert
space describing a single link in a lattice gauge theory is
spanned by electric basis states of the form jR; a; bi
where R is a representation of the gauge group, and a
and b are indices that label states in the representation R
when acted from the left and right. Physical states are
subject to a constraint from Gauss’s law which requires
that the sum of representations on each vertex of the
lattice forms a singlet. On a lattice where each vertex is
connected to at most three links, gauge invariant states
can be specified by the representation R on each link
and a specification on each vertex of how the links add
to form a singlet.
For SU(N) gauge groups, a representation R can be

labeled by a Young diagram, which can be specified
through the number of columns with 1; 2;…; N − 1 boxes.
For SU(3) only two numbers are required, and the labels are
often chosen as ðp; qÞ, with p labeling the number of
columns with a single box, and q labeling the number of
columns with two boxes. It will be useful to obtain a

representation of Young diagrams in terms of lines with
arrows, as illustrated in Fig. 3. One can see that funda-
mental and antifundamental representations can be repre-
sented either by lines with a single arrow in one direction,
or by lines with a double arrow in the opposite direction.
More complex representations can be built by combining
such lines together.
For lattices where vertices connect to more links, such as

a square lattice in 2D or 3D, not all states that can be
labeled by the representation above are linearly indepen-
dent, leading to an ambiguity in labeling the basis states.
This is due to the so-called Mandelstam constraints, which
relate contractions of representation indices across a vertex.
A point splitting procedure can be performed to split each
vertex into three link vertices connected by virtual links,
which lifts this ambiguity. In this point-split lattice, the
gauge invariant states can be specified with the same
assignment of labels used on a trivalent lattice.
There is an equivalent labeling of the states of the

physical Hilbert space that will prove useful, using the
arrow representation introduced above. This is illustrated in
Fig. 4, and will be called a “loop representation” [158]. In
this representation each state is labeled by a set of loops Li,
together with a specification al, which denotes the way the
arrows at each link l having more than one loop pass
through being combined. Each loop needs to specify which
plaquettes are encircled and in which order, while al
contains the information on how to combine lines of
multiple loops into single or double arrows. Note that it
might seem that there is an ambiguity in the choice of single
arrows in one or double arrows in the other direction. This

FIG. 3. Graphical representations of Young diagrams in terms
of arrows.
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ambiguity is fixed by choosing representations with p ¼ 0
or q ¼ 0 to have only single arrows, and demanding that
the number of arrows entering and leaving a vertex is
conserved. Because of the point splitting, closed loops have
the property that their lines cannot cross each other, so they
cannot form knots or be twisted. A loop representation is
therefore spanned by the states jfLi; algi. Note that this
loop representation is simply a graphical representation of
the states with definite representation at each link. In
particular, lines do not necessarily represent the tensor
indices of a given representation, and lines being connected
does not necessarily imply tensor indices being contracted.
Before moving on, we want to make it clear that the loop
representation as given is likely not a computationally
efficient representation of the Hilbert space, since loops are
necessarily nonlocal objects which can in general span an
arbitrary number of plaquettes. Its usefulness will come
from when applying the 1=Nc expansion.
The vacuum state in the interacting theory can be

generated adiabatically from the vacuum state of the free
electric theory (the vacuum at g ¼ ∞) by acting with the
operators of the interacting Hamiltonian, which are □̂

operators at the different plaquettes or Ê2
i operators at the

different links. Excited states in the simplest topological
sector can be obtained by further applications of electric
energy or plaquette operators. One can therefore classify all
states in this sector by the minimum number of plaquette
operators and its conjugate that are required to reach it from
the vacuum

jfPp; Ppgi≡
Y
p

□̂
Pp
p □̂

†P̄p
p j0i: ðA1Þ

This state will be a linear combination of several electric
basis states and one can write

jfPp; P̄pgi ¼
X

fLi;alg
hfLi; algjfPp; P̄pgijLi; ali: ðA2Þ

Appendix B: Large Nc counting of states—The large
Nc scaling of a state, jfLi; algi is determined by the
large Nc expansion of hfLi; algjfPp; P̄pgi for the
minimal choice of Pp and P̄p to obtain a nonzero
overlap. Defining jfLigi ¼

Q
i ULi

j0i where ULi
is a

product of parallel transporters along the loop Li
and using that the overlap hfLi; algjfLigi is Oð1Þ in
the Nc scaling, the Nc scaling is determined by the
overlap hfLigjfPp; P̄pgi. This overlap can be evalu-
ated in the magnetic basis through inserting
1 ¼ Q

links l

R
dUljUlihUjl. To evaluate the large Nc

scaling of these integrals, the identity

Z
dU

Yq
n¼1

UinjnU
�
i0nj0n

¼ 1

Nq
c

X
permutations k

Yq
n¼1

δini0kn
δjnj0kn

þO
�

1

Nqþ1
c

�
; ðB1Þ

will be used [159]. The large Nc scaling will be
determined by the permutation of indices contraction
that gives the largest factors of Nc. A diagrammatic
method of evaluating the large Nc scaling is shown
in Fig. 5.

FIG. 4. Graphical representations of basis states on a point-split
lattice.

FIG. 5. Graphical method to obtain the scaling of the overlap matrix hfLigjfPp; P̄pgi. The top example contains two loops, each
encircling a single plaquettem1 ¼ m2 ¼ 1, while the bottom example has a single loop encircling 2 loopsm1 ¼ 1. This gives for the top
example q1 ¼ q2 ¼ 1þ 3 × 1 ¼ 4 and v1 ¼ v2 ¼ 2þ 2 × 1 ¼ 4, giving the final scaling N0

c. For the bottom example we have q1 ¼
1þ 2 × 3 ¼ 7 and v1 ¼ 2þ 2 × 2 ¼ 6, giving the final scaling 1=Nc.
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First, the plaquette operators being applied are placed
over loops in the final state. To determine the powers of Nc
that come from contracting the Kronecker δ’s, one can erase
the middle of each link in the diagram and connect the lines
from the same vertex. This leaves a set of v closed loops
involving one vertex each, and each of these closed loops
contributes a factor of Nc in the numerator. Each loop Li

therefore contributes a factorNvi−qi
c and the total Nc scaling

is given by

Nv−q
c ; q≡X

i

qi; v≡X
i

vi ðB2Þ

to the final overlap. Since each Uij in Eq. (B1) corresponds
to a line in the figure, one immediately finds that q ¼ nl=2,
where nl is the total number of lines on each link in the
diagram. Denoting by mi the number of plaquettes
encircled by each loop Li, one needsmi plaquette operators
for each loop. The total number of lines is then given by
nl ¼ 2þ 6mi, and the total number of closed loops nv is

given by 2þ 2mi for each loop in the basis. Thus one finds

qi ¼ 1þ 3mi; vi ¼ 2þ 2mi: ðB3Þ

Putting this together, one finds that each loop contributes a
factor of N1−mi

c to the overall scaling of the overlap, such
that

hfLi; algjfPp; P̄pgi ∝
Y
i

N1−mi
c : ðB4Þ

This implies that the states that can be reached to leading
order in 1=Nc are those that only involve loops Li with
mi ¼ 1. Therefore, the only overlap that survives in the
large Nc limit is the one with states jfLi; algi for which
each loop encircles exactly one plaquette. At order 1=Nc,
states with loops extending over two plaquettes will be
present. Basis constructions similar to those in the main text
can be used to represent these states on a quantum
computer.
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