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Particle decays do not constitute a spin “measurement” in the quantum-mechanical sense but still modify
the spin state, in particular, for an entangled system. We show that for a spin-entangled pair of particles the
entanglement of the system can increase after the decay of one particle. This unique phenomenon has no
equivalent for stable particles and could be observable in top pair production at a high-energy polarized
eþe− collider.
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Quantum entanglement stands out as one of the most
intriguing phenomena in the realm of quantum mechanics
[1,2]. It has been experimentally verified thoroughly and
has profound implications for the development of quantum
technologies, quantum computing, and for our philosophi-
cal conception of the Universe. Even though tests and
applications of quantum entanglement date from decades
ago, elementary particle physics provides novel effects, still
untested, which involve quantum entanglement and particle
decay: postdecay entanglement [3] and postselection of
decayed states [4] (see also [5]). In this Letter, we show a
remarkable feature: the possibility that the state after decay
is more entangled than before.
Any reasonable measure of entanglement requires

monotonicity; i.e., the entanglement cannot increase under
local operations and classical communications (LOCCs).
Still, under suitable local manipulations, the entanglement
may increase with some probability of failure. These
generalized operations are called SLOCCs (i.e., stochastic
LOCCs) [6]. This is the basis of the entanglement dis-
tillation techniques. We will show that, for a system of two
particles A (Alice) and B (Bob), when one of them decays,
the system can spontaneously get more entangled (under
any standard measure of entanglement), even though,
obviously, the process is completely local. We will see
that this entanglement amplification—which can be dubbed
as “autodistillation”—would be experimentally observable
in top pair production at a high-energy eþe− collider,
especially if the beams are polarized. Top quarks are ideally
suited to observe this effect. Namely, they decay t → Wb
with a branching ratio near unity, and the spin observables
of both t and W, as well as their spin correlations, can be

measured from angular distributions of their decay products
[7–11]. In this way, spin entanglement of tt̄ pairs at the
Large Hadron Collider (LHC) has already been established
[12,13]. In eþe− collisions, and depending on the kin-
ematical configuration of the decay products, the entangle-
ment of t and W− (produced in the decay of t̄) or,
equivalently, t̄ and Wþ, can be larger than the initial one.
Formalism of postdecay density operators—Let us con-

sider a particle A in a pure state jψi, decaying into some
given final state, A → A1…An with defined four-momenta.
This can be viewed as a two-step process: (i) the decay of
jψi into a state Tjψi, with T the transition operator—this
accounts for the multiparticle component of the unitary
evolution of the initial state—and (ii) the measurement of
the momenta of A1;…; An, which we will generically label
as P. This measurement implicitly involves the identifica-
tion of the various particle species. Then, we determine the
final state by applying to Tjψi the projector into the
subspace with a definite value of the final momenta,

P ¼
X
α

jPξαihPξαj; ð1Þ

with ξα generically denoting spin indices of the multi-
particle final state. The final state is then

jψ 0i ¼ N
X
α

jPξαihPξαjTjψi

¼ N jPi
X
α

hPξαjTjψijξαi: ð2Þ

The normalization can be conveniently chosen so that

jN j2
X
α

jhPξαjTjψij2 ¼ 1: ð3Þ

Writing the initial state in a basis of spin eigenstates,
jψi ¼ P

j cjjϕji, and defining the decay amplitudes

Mαj ≡ hPξαjTjϕji; ð4Þ

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 133, 111801 (2024)

0031-9007=24=133(11)=111801(6) 111801-1 Published by the American Physical Society

https://orcid.org/0000-0002-5475-8920
https://ror.org/022r8mj40
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.133.111801&domain=pdf&date_stamp=2024-09-10
https://doi.org/10.1103/PhysRevLett.133.111801
https://doi.org/10.1103/PhysRevLett.133.111801
https://doi.org/10.1103/PhysRevLett.133.111801
https://doi.org/10.1103/PhysRevLett.133.111801
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


the normalized final state reads

jψ 0i ¼ 1

kMck jPi
X
α

ðMcÞαjξαi; ð5Þ

whereMc is a vector with components ðMcÞα ¼
P

j Mαjcj
and k · k is the Euclidean norm.
For a mixed state characterized by the operator

ρ ¼ P
ij ρijjϕiihϕjj, the final state is also obtained by

considering the decay as the two-step process of decay plus
measurement. The resulting density operator is

ρ0 ¼ 1

trðPρ̃PÞPρ̃P; ð6Þ

with ρ̃ ¼ TρT†. In terms of the decay amplitudes Mαj, and
ignoring the spatial part jPi which is fixed by the
measurement, the spin density operator can be written as

ρ0 ¼ 1P
iðMρM†Þαα

X
αβ

ðMρM†Þαβjξαihξβj: ð7Þ

Above, matrix multiplication is understood; that is,
ðMρM†Þαβ ¼ MαiρijM

†
jβ.

This formalism can easily be generalized to two or more
particles, by restricting the projector to the subspace of the
decaying particle. Let us assume we have a system of two
particles A and B in a pure state

jψi ¼
X
ij

cijjϕiχji; ð8Þ

where A is the decaying particle as before and jχji describe
the spin degrees of freedom of particle B, whose possible
decay we do not consider. The state after the decay is,
omitting the spatial part jPi,

jψ 0i ¼ 1

kMck
X
αj

ðMcÞαjjξαχji; ð9Þ

with ðMcÞαj ¼ Mαkckj. The norm of the matrix Mc is the
usual one kAk2 ¼ trAA†. In the most general case, the two-
particle spin state is given by a density operator

ρ ¼
X
ijkl

ρklij jϕiχkihϕjχlj: ð10Þ

The spin state after the decay of A is given by

ρ0 ¼ 1P
αkðMρkkM†Þαα

X
αβkl

ðMρklM†Þαβjξαχkihξβχlj; ð11Þ

with matrix multiplication in the lower indices of ρklij .

Measurements of ρ0 at fixed values of jPi are not
possible, and, in practice, they have to be replaced by
measurements over a region S in the phase space for A
decay. The most common situation is a two-body decay, in
which the phase space is two-dimensional and can be
parametrized by two angles Ω ¼ ðθ;ϕÞ. The postdecay
density operator for this case is

ρ0 ¼ 1P
αk

R
S dΩðMρkkM†Þαα

×
X
αβkl

�Z
S
dΩðMρklM†Þαβ

�
jξαχkihξβχlj: ð12Þ

The generalization of the above equation for multibody
decay phase space is straightforward. We note that the
density operator ρmay already involve integration in phase
space, but this does not affect the calculation of ρ0 using
either (11) or (12). This formalism of postdecay density
operators can be compared with direct Monte Carlo cal-
culations, finding excellent agreement [14].
Understanding autodistillation—With the previous for-

malism, we can show how the state after decay can be more
entangled than before, using a simple example. Let us
consider a system composed of two particles A and B in a
pure state, namely, Eq. (8), described by the matrix c. A
convenient measure of the entanglement of a pure state is
the concurrence, defined as C2 ¼ 2ð1 − Trρ2AÞ, where ρA is
the effective density matrix in Alice side after tracing in
Bob (or the other way around). Hence, the initial con-
currence is

C2
initial ¼ 2ð1 − tr½cc†�2Þ: ð13Þ

The state after the decay is still pure, given by (9), with a
concurrence

C2
final ¼ 2

�
1 −

tr½ðMcÞðMcÞ†�2
ðtr½ðMcÞðMcÞ†�Þ2

�
: ð14Þ

Now, depending on the matrix elements Mαj, this entan-
glement can be higher than the initial one.
Let us consider two spin-1=2 particles, say, a and ā, with

well-defined momenta, in a spin-entangled state

jψi ¼ cαja1=2ā−1=2i þ sαja−1=2ā1=2i; ð15Þ

where cα ¼ cos α, sα ¼ sin α, and the subscripts
�1=2 indicate the eigenvalue of the third spin component.
This equation corresponds to the initial state jψi in Eq. (8)
with nonzero entries c1=2;−1=2 ¼ cα, c−1=2;1=2 ¼ sα. In this
case, the reduced density matrix reads ρA ¼ diagfc2α; s2αg,
and, thus, the initial concurrence is
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C2
initial ¼ 2

�
1 − ðc4α þ s4αÞ

�
¼ 4c2αs2α: ð16Þ

Now suppose that the particle a decays along the process
a → bV, where b is a spin 1=2 particle with tiny mass
which we neglect here and well-defined chirality (and, thus,
helicity), say, left-handed, and V is a massive vector boson.
This is the case for the top decay t → bLW, but for the
moment we prefer not to particularize to specific particles.
Suppose that in the rest frame of the a particle the decay has
occurred with the momentum of the vector boson along the
(positive) z direction. The precise meaning of this statement
is the following: In the Alice side (particle a), we detect a
particle b, originated by the decay, and measure its
momentum, which instantaneously determines the momen-
tum of V. It is irrelevant whether or not we measure the spin
of b, since this is established by its left-handed chirality and
its negligible mass. Actually, in this instance, the spin state
of V is also completely determined by that of a and angular
momentum conservation. The only two possibilities are

a1=2 → b−1=2V0; a−1=2 → b−1=2V−1; ð17Þ

where the subscripts of b and V denote their helicities. The
amplitudes for these processes can be labeled as M1=2 and
M−1=2. Hence, the final state after the decay, Eq. (9), reads

jψ 0i ¼ N jPi½cαM1=2jb−1=2V0ā−1=2i
þ sαM−1=2jb−1=2V1ā1=2i�: ð18Þ

Since the spin state of b factorizes in (18), we can write the
final state as

jψ 0i ¼ N jPijb−1=2i½cαM1=2jV0ā−1=2i
þ sαM−1=2jV1ā1=2i�: ð19Þ

Comparing Eqs. (15) and (19), we observe that the initial
entangled fa; āg system has led, after the decay of a, to an
entangled fV; āg system with different amount of entan-
glement. The concurrence for the final spin state is

C2
final ¼ 4c2αs2αðc2αrþ s2αr−1Þ−2; ð20Þ

with r ¼ jM1=2=M−1=2j. The point is that if r ≠ 1, which is
the usual case, then C2

initial ≠ C2
final. For example, if the

system is initially prepared in a state (15) with tan α ¼ r, we
get a final state with maximum entanglement, C2

final ¼ 1.
Top polarized decay amplitudes—In order to study

autodistillation in a realistic setup, we consider top quarks
and their decay t → Wb. In the top quark rest frame, we
take a reference system ðx; y; zÞ and denote by p⃗ ¼
qðsin θ cosϕ; sin θ sinϕ; cos θÞ the three-momentum of
the W boson and EW and Eb the energies of W and b, all
quantities evaluated in the top quark rest frame. The masses

of t,W, and b are denoted asmt,MW , andmb, respectively,
as usual. Unless otherwise indicated, we take mt ¼
172.5 GeV,MW ¼ 80.4 GeV, andmb ¼ 4.8 GeV and con-
sider a generic interaction

L ¼ −
1ffiffiffi
2

p b̄γμðgLPL þ gRPRÞtW−
μ : ð21Þ

The standard model interaction is recovered by setting
gL ¼ g and gR ¼ 0.
The decay amplitudes Mαj appearing in a general

postdecay density operator (12) must be calculated for a
fixed reference system. However, for fixed angles ðθ;ϕÞ the
helicity amplitudes can be used as well, as they are related
by a change of basis for the b and W spins. Helicity
amplitudes for the decay of top quarks have been provided
in previous literature [15]. We calculate them here, also
including those for antiquarks. In the helicity basis, the top
spin is quantized along the ẑ axis, whereas, for theW boson
and b quark, the helicity direction is used. We label the
amplitudes as As1s2s3 , where s1, s2, and s3 are the spin
components of t, b, and W, in the respective axis consid-
ered. For these amplitudes, we introduce the kinematical
factors

H�
1 ¼ ½mtðEb þmbÞ�1=2

�
1� q

Eb þmb

�
;

H�
2 ¼ EW � qffiffiffi

2
p

MW

: ð22Þ

Notice that H−
1 vanishes for mb ¼ 0, and the terms with

this factor are helicity suppressed. The nonzero amplitudes
are then

A1
2
1
2
1 ¼

1ffiffiffi
2

p ðgLH−
1 − gRH

þ
1 Þeiϕ=2 cos

θ

2
;

A1
2
1
2
0 ¼ −

1ffiffiffi
2

p ðgLH−
1H

−
2 − gRH

þ
1 H

þ
2 Þeiϕ=2 sin

θ

2
;

A1
2
−1
2
0 ¼

1ffiffiffi
2

p ðgLHþ
1 H

þ
2 − gRH−

1H
−
2 Þeiϕ=2 cos

θ

2
;

A1
2
−1
2
−1 ¼ −

1ffiffiffi
2

p ðgLHþ
1 − gRH−

1 Þeiϕ=2 sin
θ

2
;

A−1
2
1
2
1 ¼

1ffiffiffi
2

p ðgLH−
1 − gRH

þ
1 Þe−iϕ=2 sin

θ

2
;

A−1
2
1
2
0 ¼

1ffiffiffi
2

p ðgLH−
1H

−
2 − gRH

þ
1 H

þ
2 Þe−iϕ=2 cos

θ

2
;

A−1
2
−1
2
0 ¼

1ffiffiffi
2

p ðgLHþ
1 H

þ
2 − gRH−

1H
−
2 Þe−iϕ=2 sin

θ

2
;

A−1
2
−1
2
−1 ¼

1ffiffiffi
2

p ðgLHþ
1 − gRH−

1 Þe−iϕ=2 cos
θ

2
; ð23Þ

with As1
1
2
−1 ¼ As1−1

2
1 ¼ 0 due to angular momentum con-

servation. They agree with those in Ref. [15]. The ampli-
tudes Ā for top antiquark decays have also been obtained.
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They relate to those in (23) by the interchange of left-
and right-handed couplings, namely, Ās1s2s3ðθ;ϕÞ ¼
As1s2s3ðθ;ϕÞjgL↔gR

. Note that, neglecting the bottom mass,
for θ ¼ 0; π only two amplitudes survive, which essentially
correspond to the M1=2;M−1=2 amplitudes in Eq. (18).
Depending on the value of θ, the value of r in Eq. (20) is
larger or smaller than 1, which reflects the probabilistic
character of the entanglement amplification.
Autodistillation in eþe− collisions—Quantum entangle-

ment between top quark pairs produced at the LHC has
been addressed in previous literature [16–23]. However, top
quark pair production at the LHC is not suited to observe an
entanglement increase. Near threshold, the tt̄ density
operator is dominated by the spin-singlet component
1=

ffiffiffi
2

p ½j þ −i − j −þi� and in the boosted central region

by the triplet 1=
ffiffiffi
2

p ½j þ þi þ j − −i�. But, obviously, from
such initial states (i.e., with cα ¼ sα) the entanglement
cannot increase; see Eqs. (15) and (19). In order to see the
reason behind that, we write the tt̄ density operator in terms
of polarizations Bþ

i (for the quark) and B−
i (for the

antiquark) and spin correlation coefficients Cij:

ρ ¼ 1

4

�
1 ⊗ 1þ

X
i

ðBþ
i σi ⊗ 1þ B−

i 1 ⊗ σiÞ

þ
X
ij

Cijσi ⊗ σj

�
: ð24Þ

In the basis of S3 eigenstates fj þ þi; j þ −i; j −þi;
j − −ig, the density operator (24) reads

ρ ¼ 1

4

2
666664

1þ Bþ
3 þ B−

3 þ C33 B−
1 þ C31 − iðB−

2 þ C32Þ Bþ
1 þ C13 − iðBþ

2 þ C23Þ C11 − C22 − iðC12 þ C21Þ
B−
1 þ C31 þ iðB−

2 þ C32Þ 1þ Bþ
3 − B−

3 − C33 C11 þ C22 þ iðC12 − C21Þ Bþ
1 − C13 − iðBþ

2 − C23Þ
Bþ
1 þ C13 þ iðBþ

2 þ C23Þ C11 þ C22 − iðC12 − C21Þ 1 − Bþ
3 þ B−

3 − C33 B−
1 − C31 − iðB−

2 − C32Þ
C11 − C22 þ iðC12 þ C21Þ Bþ

1 − C13 þ iðBþ
2 − C23Þ B−

1 − C31 þ iðB−
2 − C32Þ 1 − Bþ

3 − B−
3 þ C33

3
777775
:

Then, one can see that the reason for having eigenvectors
with cα ¼ sα is the fact that t and t̄ polarizations vanish at
the leading order (with a tiny polarization generated at
higher orders), as off-diagonal spin correlations C13 and
C23 do. Depending on the reference system ðx; y; zÞ used, a
small C12 may be present, but it breaks the equality cα ¼ sα
in the principal eigenvector only at the permille level.
In order to have polarized top quarks, one has to resort to

eþe− collisions, where the chirality of the ttZ coupling
produces nonzeroB�

i . However, top pairs produced in e
þe−

collisions at threshold have their spins in a separable state:
For an initial eþLe

−
R state, both electron spins point in the

electron direction, and, by angularmomentumconservation,
so do the t and t̄ spins. For an initial eþRe

−
L, it is the opposite.

Therefore, in order to have large entanglement, we need to
consider energetic collisions, inwhich case the helicity basis
is a convenient choice, with axes ẑ ¼ k̂, x̂ ¼ r̂, ŷ ¼ n̂, theK,
R, and N axes being defined as follows [24]. (i) K
axis (helicity)—k̂ is a normalized vector in the direction
of the top quark three-momentum in the tt̄ rest frame. (ii) R
axis—r̂ is in the production plane and defined as r̂ ¼
ðp̂p − cos θtk̂Þ= sin θt, with θt the production angle in the
center-of-mass (c.m.) frame. (iii) N axis—n̂ ¼ k̂ × r̂ is
orthogonal to the production plane. It is not our goal to
provide a feasibility study for the observation of postdecay
autodistillation but to show that this effect is real and
physically accessible at future colliders. We consider fully
polarized eþe− collisions at a c.m. energy of 1 TeV,
generated with MadGraph [25]. Top pairs are produced in

an almost pure state in polarized collisions. For central
production j cos θtj ≤ 0.2, the tt̄ state is

jψiRL ¼ 0.32j þ þi þ 0.21½j þ−i þ j−þi� þ 0.90j−−i;
jψiLR ¼ 0.92j þ þi− 0.20½j þ−i þ j−þi� þ 0.25j−−i;

ð25Þ

up to corrections at the permille level. (The subindices RL
and LR label the eþRe

−
L and eþLe

−
R initial state, respectively.)

We consider the decay of the antiquark and the entanglement
between the top quark and theW− boson, after tracing over
the spins of the b antiquark (which has negligible influence
because of its left-handed chirality, as previously discussed).
As a measure of entanglement, we use the negativity of the
partial transpose on the B subspace ρTB :

NðρÞ ¼ kρTBk − 1

2
; ð26Þ

where kAk ¼ tr
ffiffiffiffiffiffiffiffiffi
AA†

p
¼ P

i

ffiffiffiffi
λi

p
, where λi are the (positive)

eigenvalues of the matrix AA†. We plot in Fig. 1 the
negativity N of the tW− pair as a function of θ, for
ϕ ¼ 0; π. For better comparison, we also include the
negativity of the tt̄ pair.
For brevity, we have shown here the entanglement

amplification for fixed angles, but it is clear that the effect
holds when one considers the integral over a sufficiently
narrow region of the decay phase space. For example,
for eþRe

−
L collisions, the tW entanglement is N ¼ 0.30 in
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the region cos θ ≤ −0.9 [14], i.e., larger than the initial
N ¼ 0.25 in the tt̄ system. We have also considered fully
polarized beams for simplicity, but the entanglement
increase would also manifest with partial beam polarization
with the expected parameters [26]. For polarizations
Peþ ¼ 0.6, Pe− ¼ −0.9, and since σðeþRe−LÞ ≃ 2σðeþLe−RÞ,
the contribution from eþLe

−
R is 150 times smaller than that of

eþRe
−
L and, thus, negligible. We also note that the tW

entanglement in the regions of interest is much larger than
the one found in pp collisions, and with sufficient statistics
of tt̄ pairs it would be measurable using the same method
discussed in Ref. [3].
Discussion—We have shown the remarkable fact that for

a spin-entangled pair of particles the entanglement of the
system can spontaneously increase after the decay of one
particle. This would not be possible for a purely unitary
evolution; however, particle decay also entails the meas-
urement of the final state products with definite momenta,
which is a projection. And this contrasts with other
phenomena that a subsystem can undergo in its interaction
with the environment, which generally lead to decoherence.
Autodistillation occurs with a certain probability and, thus,
can be considered as a kind of SLOCC [27], as it is also
standard distillation, i.e., the manufacturing of maximally
entangled copies of a system from a larger number of less-
entangled copies [27]. Note, however, that distillation
techniques require the use of ancillary qubits, which have
to be prepared in a particular way that depends on a
complete knowledge of the initial state. This step is absent
in autodistillation, where everything takes place in a
completely spontaneous way.
Finally, we have shown that this phenomenon would

be experimentally observable in top pair production at a
high-energy eþe− collider. In other physical systems, this
effect might even be used to prepare states with large
entanglement.
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